dc.creatorJURIAANS, S. O.
dc.creatorPASSI, I. B. S.
dc.creatorSOUZA FILHO, A. C.
dc.date.accessioned2012-10-20T04:50:19Z
dc.date.accessioned2018-07-04T15:46:42Z
dc.date.available2012-10-20T04:50:19Z
dc.date.available2018-07-04T15:46:42Z
dc.date.created2012-10-20T04:50:19Z
dc.date.issued2009
dc.identifierPROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, v.119, n.1, p.9-22, 2009
dc.identifier0253-4142
dc.identifierhttp://producao.usp.br/handle/BDPI/30599
dc.identifierhttp://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000266586100002&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627238
dc.description.abstractWe classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
dc.languageeng
dc.publisherINDIAN ACAD SCIENCES
dc.relationProceedings of the Indian Academy of Sciences-mathematical Sciences
dc.rightsCopyright INDIAN ACAD SCIENCES
dc.rightsrestrictedAccess
dc.subjectHyperbolic groups
dc.subjectquaternion algebras
dc.subjectfree groups
dc.subjectgroup rings
dc.subjectunits
dc.titleHyperbolic unit groups and quaternion algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución