dc.creator | JURIAANS, S. O. | |
dc.creator | PASSI, I. B. S. | |
dc.creator | SOUZA FILHO, A. C. | |
dc.date.accessioned | 2012-10-20T04:50:19Z | |
dc.date.accessioned | 2018-07-04T15:46:42Z | |
dc.date.available | 2012-10-20T04:50:19Z | |
dc.date.available | 2018-07-04T15:46:42Z | |
dc.date.created | 2012-10-20T04:50:19Z | |
dc.date.issued | 2009 | |
dc.identifier | PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, v.119, n.1, p.9-22, 2009 | |
dc.identifier | 0253-4142 | |
dc.identifier | http://producao.usp.br/handle/BDPI/30599 | |
dc.identifier | http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000266586100002&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1627238 | |
dc.description.abstract | We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra. | |
dc.language | eng | |
dc.publisher | INDIAN ACAD SCIENCES | |
dc.relation | Proceedings of the Indian Academy of Sciences-mathematical Sciences | |
dc.rights | Copyright INDIAN ACAD SCIENCES | |
dc.rights | restrictedAccess | |
dc.subject | Hyperbolic groups | |
dc.subject | quaternion algebras | |
dc.subject | free groups | |
dc.subject | group rings | |
dc.subject | units | |
dc.title | Hyperbolic unit groups and quaternion algebras | |
dc.type | Artículos de revistas | |