Artículos de revistas
Decay of geometry for Fibonacci critical covering maps of the circle
Fecha
2009Registro en:
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, v.26, n.4, p.1533-1551, 2009
0294-1449
10.1016/j.anihpc.2009.03.001
Autor
COLLI, Eduardo
NASCIMENTO, Marcio L. do
VARGAS, Edson
Institución
Resumen
We study the growth of Df `` (f(c)) when f is a Fibonacci critical covering map of the circle with negative Schwarzian derivative, degree d >= 2 and critical point c of order l > 1. As an application we prove that f exhibits exponential decay of geometry if and only if l <= 2, and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called Collet-Eckmann condition. (C) 2009 Elsevier Masson SAS. All rights reserved.