dc.creatorCOLLI, Eduardo
dc.creatorNASCIMENTO, Marcio L. do
dc.creatorVARGAS, Edson
dc.date.accessioned2012-10-20T04:49:46Z
dc.date.accessioned2018-07-04T15:46:32Z
dc.date.available2012-10-20T04:49:46Z
dc.date.available2018-07-04T15:46:32Z
dc.date.created2012-10-20T04:49:46Z
dc.date.issued2009
dc.identifierANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, v.26, n.4, p.1533-1551, 2009
dc.identifier0294-1449
dc.identifierhttp://producao.usp.br/handle/BDPI/30560
dc.identifier10.1016/j.anihpc.2009.03.001
dc.identifierhttp://dx.doi.org/10.1016/j.anihpc.2009.03.001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627199
dc.description.abstractWe study the growth of Df `` (f(c)) when f is a Fibonacci critical covering map of the circle with negative Schwarzian derivative, degree d >= 2 and critical point c of order l > 1. As an application we prove that f exhibits exponential decay of geometry if and only if l <= 2, and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called Collet-Eckmann condition. (C) 2009 Elsevier Masson SAS. All rights reserved.
dc.languageeng
dc.publisherGAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.relationAnnales de l Institut Henri Poincare-analyse Non Lineaire
dc.rightsCopyright GAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.rightsrestrictedAccess
dc.subjectCircle maps
dc.subjectCovering maps
dc.subjectFibonacci combinatorics
dc.subjectDecay of geometry
dc.subjectInvariant measures
dc.titleDecay of geometry for Fibonacci critical covering maps of the circle
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución