dc.date.accessioned2017-04-27T18:53:52Z
dc.date.available2017-04-27T18:53:52Z
dc.date.created2017-04-27T18:53:52Z
dc.date.issued2009
dc.identifier0098-3004
dc.identifierhttp://hdl.handle.net/10533/197997
dc.identifierD04I1055
dc.identifierWOS:000266544700018
dc.identifierWOS:000266544700018
dc.identifier0
dc.description.abstractThe modeling of uncertainty in continuous and categorical regionalized variables is a common issue in the geosciences. We present a hybrid continuous/categorical model, in which the continuous variable is represented by the transform of a Gaussian random field, while the categorical variable is obtained by truncating one or more Gaussian random fields. The dependencies between the continuous and categorical variables are reproduced by assuming that all the Gaussian random fields are spatially cross-correlated. Algorithms and computer programs are proposed to infer the model parameters and to co-simulate the variables, and illustrated through a case study on a mining data set. (C) 2008 Elsevier Ltd. All rights reserved.
dc.languageENG
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relationhttps://doi.org/10.1016/j.cageo.2008.07.005
dc.relation10.1016/j.cageo.2008.07.005
dc.relationinfo:eu-repo/grantAgreement/Fondef/D04I1055
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93477
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleConditional co-simulation of continuous and categorical variables for geostatistical applications
dc.typeArticulo


Este ítem pertenece a la siguiente institución