dc.date.accessioned2017-04-27T18:50:16Z
dc.date.available2017-04-27T18:50:16Z
dc.date.created2017-04-27T18:50:16Z
dc.date.issued2013
dc.identifier0718-560X
dc.identifierhttp://hdl.handle.net/10533/197072
dc.identifierD10I1049
dc.identifierWOS:000323585500001
dc.identifierWOS:000323585500001
dc.identifier0
dc.description.abstractA novel logit-type discrete choice model is presented whose distinctive characteristic is that it "polarizes" or forces the prediction of choice probabilities towards values of 0 or 1. In real-world empirical tests this property enabled the new formulation, which we call the polarized logit model (PLM), to outperform the predictive capacity of other classical discrete choice models. The PLM is derived from the optimality conditions of a maximum entropy optimization model with linear and quadratic constraints. These conditions yield a fixed-point logit probability function that exhibits endogeneity, which is corrected for using instrumental variables so that the model's parameters can be estimated. The PLM's marginal substitution rates are similar to those of the traditional logit models. (c) 2013 Elsevier Ltd. All rights reserved.
dc.languageSPA
dc.publisherUNIV CATOLICA DE VALPARAISO
dc.relationhttps://doi.org/10.1016/j.tra.2013.06.003
dc.relation10.1016/j.tra.2013.06.003
dc.relationinfo:eu-repo/grantAgreement/Fondef/D10I1049
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93477
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleA polarized logit model
dc.typeArticulo


Este ítem pertenece a la siguiente institución