dc.date.accessioned2016-12-27T21:48:21Z
dc.date.accessioned2018-06-13T23:03:34Z
dc.date.available2016-12-27T21:48:21Z
dc.date.available2018-06-13T23:03:34Z
dc.date.created2016-12-27T21:48:21Z
dc.date.issued2013
dc.identifier9788461627233 
dc.identifierhttp://hdl.handle.net/10533/164901
dc.identifier1120218
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1543703
dc.description.abstractThis work deals with a continuous-time predator-prey model of Leslie-Gower type considering a Holling III type functional response. Conditions for the existence of equilibrium points, their local stability and the existence of at least one limit cycle in the phase plane are established In particular we show that the point t (0; 0) has a great importance on the dynamics of model, since it has a separatrix curve dividing the behavior of trajectories. Those upper this curve have the point (0; 0) as their ! ? limit. So, the extinction of both populations can be possible according to the initial conditions.
dc.languageeng
dc.publisherCMMSE
dc.relationinfo:eu-repo/grantAgreement/Fondecyt/1120218
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93479
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI 2.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleA CLASS OF LESLIE-GOWER TYPE PREDATOR-PREY MODEL WITH SIGMOID FUNCTIONAL RESPONSE
dc.typeCapitulo de libro


Este ítem pertenece a la siguiente institución