Artículos de revistas
Long-range Dependence And Approximate Bayesian Computation
Registro en:
Communications In Statistics-theory And Methods. Taylor & Francis Inc, v. 46, p. 1219 - 1237, 2017.
0361-0918
1532-4141
WOS:000395194600027
10.1080/03610918.2014.995816
Autor
Andrade
P.; Rifo
L.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) In this work, we propose a method for estimating the Hurst index, or memory parameter, of a stationary process with long memory in a Bayesian fashion. Such approach provides an approximation for the posterior distribution for the memory parameter and it is based on a simple application of the so-called approximate Bayesian computation (ABC), also known as likelihood-free method. Some popular existing estimators are reviewed and compared to this method for the fractional Brownian motion, for a long-range binary process and for the Rosenblatt process. The performance of our proposal is remarkably efficient. 46 2 1219 1237 Sao Paulo Research Foundation [2013/07699-0] CNPq at the University of Sao Paulo [141048/2013-1] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)