dc.creatorAndrade
dc.creatorP.; Rifo
dc.creatorL.
dc.date2017
dc.date2017-11-13T13:56:50Z
dc.date2017-11-13T13:56:50Z
dc.date.accessioned2018-03-29T06:10:09Z
dc.date.available2018-03-29T06:10:09Z
dc.identifierCommunications In Statistics-theory And Methods. Taylor & Francis Inc, v. 46, p. 1219 - 1237, 2017.
dc.identifier0361-0918
dc.identifier1532-4141
dc.identifierWOS:000395194600027
dc.identifier10.1080/03610918.2014.995816
dc.identifierhttp://www.tandfonline.com/doi/abs/10.1080/03610918.2014.995816
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329945
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366970
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn this work, we propose a method for estimating the Hurst index, or memory parameter, of a stationary process with long memory in a Bayesian fashion. Such approach provides an approximation for the posterior distribution for the memory parameter and it is based on a simple application of the so-called approximate Bayesian computation (ABC), also known as likelihood-free method. Some popular existing estimators are reviewed and compared to this method for the fractional Brownian motion, for a long-range binary process and for the Rosenblatt process. The performance of our proposal is remarkably efficient.
dc.description46
dc.description2
dc.description1219
dc.description1237
dc.descriptionSao Paulo Research Foundation [2013/07699-0]
dc.descriptionCNPq at the University of Sao Paulo [141048/2013-1]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherTaylor & Francis Inc
dc.publisherPhiladelphia
dc.relationCommunications in Statistics-Theory and Methods
dc.rightsfechado
dc.sourceWOS
dc.subjectBayesian Inference
dc.subjectEntropy
dc.subjectHurst Index
dc.subjectLikelihood-free Method
dc.subjectLong-range Dependence
dc.titleLong-range Dependence And Approximate Bayesian Computation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución