Artículos de revistas
A Note On Graded Polynomial Identities For Tensor Products By The Grassmann Algebra In Positive Characteristic
Registro en:
International Journal Of Algebra And Computation . World Scientific Publ Co Pte Ltd, v. 26, p. 1125 - 1140, 2016.
0218-1967
1793-6500
WOS:000383987200001
10.1142/S0218196716500478
Autor
Centrone
Lucio; Tomaz da Silva
Viviane Ribeiro
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Let G be a finite abelian group. As a consequence of the results of Di Vincenzo and Nardozza, we have that the generators of the T-G-ideal of G-graded identities of a G-graded algebra in characteristic 0 and the generators of the T-GxZ2 -ideal of G x Z(2)-graded identities of its tensor product by the infinite-dimensional Grassmann algebra E endowed with the canonical grading have pairly the same degree. In this paper, we deal with Z(2) x Z(2)-graded identities of E-k* circle times E over an infinite field of characteristic p > 2, where E-k* is E endowed with a specific Z(2)-grading. We find identities of degree p + 1 and p + 2 while the maximal degree of a generator of the Z(2)-graded identities of E-k* is p if p > k. Moreover, we find a basis of the Z(2) x Z(2)-graded identities of E-k (*) circle times E and also a basis of multihomogeneous polynomials for the relatively free algebra. Finally, we compute the Z(2) x Z(2)-graded Gelfand-Kirillov (GK) dimension of E-k* circle times E. 26 6 1125 1140 FAPESP [2013/06752-4, 2015/08961-5] CNPq - Brasil [305339/2013-3] "Para mulheres na Cieencia" (L'OREAL-ABC-UNESCO) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)