dc.creatorCentrone
dc.creatorLucio; Tomaz da Silva
dc.creatorViviane Ribeiro
dc.date2016
dc.dateset
dc.date2017-11-13T13:55:21Z
dc.date2017-11-13T13:55:21Z
dc.date.accessioned2018-03-29T06:08:48Z
dc.date.available2018-03-29T06:08:48Z
dc.identifierInternational Journal Of Algebra And Computation . World Scientific Publ Co Pte Ltd, v. 26, p. 1125 - 1140, 2016.
dc.identifier0218-1967
dc.identifier1793-6500
dc.identifierWOS:000383987200001
dc.identifier10.1142/S0218196716500478
dc.identifierhttp://www-worldscientific-com.ez88.periodicos.capes.gov.br/doi/abs/10.1142/S0218196716500478
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329630
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366655
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionLet G be a finite abelian group. As a consequence of the results of Di Vincenzo and Nardozza, we have that the generators of the T-G-ideal of G-graded identities of a G-graded algebra in characteristic 0 and the generators of the T-GxZ2 -ideal of G x Z(2)-graded identities of its tensor product by the infinite-dimensional Grassmann algebra E endowed with the canonical grading have pairly the same degree. In this paper, we deal with Z(2) x Z(2)-graded identities of E-k* circle times E over an infinite field of characteristic p > 2, where E-k* is E endowed with a specific Z(2)-grading. We find identities of degree p + 1 and p + 2 while the maximal degree of a generator of the Z(2)-graded identities of E-k* is p if p > k. Moreover, we find a basis of the Z(2) x Z(2)-graded identities of E-k (*) circle times E and also a basis of multihomogeneous polynomials for the relatively free algebra. Finally, we compute the Z(2) x Z(2)-graded Gelfand-Kirillov (GK) dimension of E-k* circle times E.
dc.description26
dc.description6
dc.description1125
dc.description1140
dc.descriptionFAPESP [2013/06752-4, 2015/08961-5]
dc.descriptionCNPq - Brasil [305339/2013-3]
dc.description"Para mulheres na Cieencia" (L'OREAL-ABC-UNESCO)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageEnglish
dc.publisherWorld Scientific Publ CO PTE LTD
dc.publisherSingapore
dc.relationInternational Journal of Algebra and Computation
dc.rightsfechado
dc.sourceWOS
dc.subjectGraded Identities
dc.subjectGrassmann Algebra
dc.titleA Note On Graded Polynomial Identities For Tensor Products By The Grassmann Algebra In Positive Characteristic
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución