dc.creator | Centrone | |
dc.creator | Lucio; Tomaz da Silva | |
dc.creator | Viviane Ribeiro | |
dc.date | 2016 | |
dc.date | set | |
dc.date | 2017-11-13T13:55:21Z | |
dc.date | 2017-11-13T13:55:21Z | |
dc.date.accessioned | 2018-03-29T06:08:48Z | |
dc.date.available | 2018-03-29T06:08:48Z | |
dc.identifier | International Journal Of Algebra And Computation . World Scientific Publ Co Pte Ltd, v. 26, p. 1125 - 1140, 2016. | |
dc.identifier | 0218-1967 | |
dc.identifier | 1793-6500 | |
dc.identifier | WOS:000383987200001 | |
dc.identifier | 10.1142/S0218196716500478 | |
dc.identifier | http://www-worldscientific-com.ez88.periodicos.capes.gov.br/doi/abs/10.1142/S0218196716500478 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/329630 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1366655 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Let G be a finite abelian group. As a consequence of the results of Di Vincenzo and Nardozza, we have that the generators of the T-G-ideal of G-graded identities of a G-graded algebra in characteristic 0 and the generators of the T-GxZ2 -ideal of G x Z(2)-graded identities of its tensor product by the infinite-dimensional Grassmann algebra E endowed with the canonical grading have pairly the same degree. In this paper, we deal with Z(2) x Z(2)-graded identities of E-k* circle times E over an infinite field of characteristic p > 2, where E-k* is E endowed with a specific Z(2)-grading. We find identities of degree p + 1 and p + 2 while the maximal degree of a generator of the Z(2)-graded identities of E-k* is p if p > k. Moreover, we find a basis of the Z(2) x Z(2)-graded identities of E-k (*) circle times E and also a basis of multihomogeneous polynomials for the relatively free algebra. Finally, we compute the Z(2) x Z(2)-graded Gelfand-Kirillov (GK) dimension of E-k* circle times E. | |
dc.description | 26 | |
dc.description | 6 | |
dc.description | 1125 | |
dc.description | 1140 | |
dc.description | FAPESP [2013/06752-4, 2015/08961-5] | |
dc.description | CNPq - Brasil [305339/2013-3] | |
dc.description | "Para mulheres na Cieencia" (L'OREAL-ABC-UNESCO) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | English | |
dc.publisher | World Scientific Publ CO PTE LTD | |
dc.publisher | Singapore | |
dc.relation | International Journal of Algebra and Computation | |
dc.rights | fechado | |
dc.source | WOS | |
dc.subject | Graded Identities | |
dc.subject | Grassmann Algebra | |
dc.title | A Note On Graded Polynomial Identities For Tensor Products By The Grassmann Algebra In Positive Characteristic | |
dc.type | Artículos de revistas | |