Tesis
PI equivalencia e não equivalencia de algebras
PI equivalence and non equivalence of algebras
Registro en:
(Broch.)
Autor
Alves, Sergio Mota
Institución
Resumen
Orientador: Plamen Emilov Koshlukov Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisticas e Computação Cientifica Resumo: As álgebras verbalmente primas são bem conhecidas em característica 0, já sobre corpos de característica p > 2 pouco sabemos sobre elas. Nesse trabalho vamos discutir algumas diferenças entre estes dois casos de característica sobre corpos infinitos. Iniciamos mostrando que o Teorema do Produto Tensorial de Kemer e duas de suas conseqüências não podem ser transportados para corpos infinitos de característica positiva p > 2. Em seguida, discutiremos algumas propriedades envolvendo as álgebras Aa;b, a saber, mostraremos que as álgebras Aa;b e Ma+b(E) não são PI-equivalentes e que as álgebras Aa;a e Ma;a (E) não são PI-equivalentes, e apresentaremos um resultado que enfatiza a importância dos monômios na determinação do ideal das identidades das álgebras Zn £ Z2-graduadas Aa;b em característica positiva. Por ¯m, apresentaremos modelos genéricos e calcularemos a dimensão de Gelfand-Kirillov para as álgebras relativamente livres de posto m nas variedades determinadas pelas álgebras E E, Aa;b e Ma;a(E) E. Como conseqüência, obteremos a prova da não PI- equivalência entre álgebras importantes para PI-teoria em característica positiva Abstract: The verbally prime algebras are well understood in characteristic 0 while over a field of characteristic p > 2 little is known about them. In this work we discuss some sharp di®erences between these two cases for the characteristic. First we show that the so-called Kemer's Tensor Product Theorem and two of its consequences cannot be extended for infnite fields of positive characteristic p > 2. Afterwards we prove that the algebras Aa;b and Ma+b(E) are not PI equivalent, while the algebras Aa;a and Ma;a(E) E are PI equivalent. Moreover we obtain a result showing the importance of the monomials in the Zn £ Z2-graded T-ideal of the algebra Aa;b. Finally, we exhibit constructions of generic models. By using these models we compute the Gelfand-Kirillov dimension of the relatively free algebras of rank m in the varieties generated by E E, Aa;b, and Ma;a(E)E. As consequence we obtain the PI non equivalence of important algebras for the PI theory in positive characteristic Doutorado Algebra Doutorado em Matematica
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza