Tesis
Algumas contribuições em otimização multiobjetivo
Registro en:
(Broch.)
Autor
Santos, Lucelina Batista dos
Institución
Resumen
Orientadores: Marko A. Rojas Medar, Rafaela Osuna Gomez Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica Resumo: Neste trabalho, estudamos o problema de otimização vetorial entre espaços de Banach quanto a condições necessárias e suficientes de otimalidade. Para isto, utilizamos diferentes noções de convexidade generalizada. Na Primeira Parte tratamos o problema (Fréchet) diferenciável. Mostramos que as soluções fracamente eficientes de tais problemas podem ser completamente caracterizadas em termos de condições estacionárias e de convexidade generalizadas (pseudoinvexidade, no caso do problema multiobjetivo irrestrito e KT-invexidade, para o problema com restrições de desigualdade). Na Segunda Parte, discutimos o problema não diferenciável. Estabelecemos um resultado de existência de soluções fracamente eficientes e uma caracterização de soluções fracamente eficientes via desigualdades quase-variacionais. Também discutimos condições de otimalidade através de cones de aproximação local e de K-derivadas. Além disto, obtivemos condições de segunda ordem através das noções de Hessiana e Derivadas Direcionais de segunda ordem generalizados (Cominetti e Correa). Na Terceira Parte, consideramos dois problemas específicos de otimização multiobjetivo não diferenciável: o problema fracionário multiobjetivo e o problema de tempo contínuo multiobjetivo Doutorado Doutor em Matematica Aplicada