Tesis
Uma extensão da distribuição Birnbaum-Saunders baseada na distribuição gaussiana inversa
An extension of the Birnbaum-Saunders distribution based on the inverse gaussian distribution
Registro en:
Autor
Ramos Quispe, Luz Marina, 1985-
Institución
Resumen
Orientador: Filidor Edilfonso Vilca Labra Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica Resumo: Vários trabalhos têm sido feitos sobre a distribuição Birnbaum-Saunders (BS) univariada e suas extensões. A distribuição bivariada Birnbaum-Saunders (BS) foi apresentada apenas recentemente por Kundu et al. (2010) e algumas extensões já foram discutidas por Vilca et al. (2014) e Kundu et al. (2013). Eles propuseram uma distribuição BS bivariada com estrutura de dependência e estabeleceram várias propriedades atraentes. Este trabalho fornece extensões, univariada e bivariada, da distribuição BS. Estas extensões são baseadas na distribuição Gaussiana Inversa (IG) que é usada como uma distribuição de mistura no contexto de misturas de escala normal. As distribuições resultantes são distribuições absolutamente contínuas e muitas propriedades da distribuição BS são preservadas. Sob caso bivariado, as marginais e condicionais são do tipo Birnbaum-Saunders univariada. Para a obtenção da estimativa de máxima verossimilhança (EMV) é desenvolvido um algoritmo EM. Ilustramos os resultados obtidos com dados reais e simulados Abstract: Several works have been done on the univariate Birnbaum-Saunders (BS) distribution and its extensions. The bivariate Birnbaum-Saunders (BS) distribution was presented only recently by Kundu et al. (2010) and some extensions have already been discussed by Vilca et al. (2014) and Kundu et al. (2013). They proposed a bivariate BS distribution with dependence structure and established several attractive properties. This work provides extensions, univariate and bivariate, of the BS distribution. These extensions are based on the Inverse Gaussian (IG) distribution that is used as a mixing distribution in the context of scale mixtures of normal. The resulting distributions are absolutely continuous distributions and many properties of the BS distribution are preserved. Under bivariate case, the marginals and conditionals are of type univariate Birnbaum-Saunders. For obtaining the maximum likelihood estimates (MLE) of the model parameters is developed an algorithm EM. We illustrate the obtained results with real and simulated dataset Mestrado Estatistica Mestra em Estatística
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.