dc.creatorGONCALVES, Daciberg
dc.creatorKOCHLOUKOVA, Dessislava Hristova
dc.date2010
dc.date2013-07-26T17:59:39Z
dc.date2016-06-30T18:27:04Z
dc.date2013-07-26T17:59:39Z
dc.date2016-06-30T18:27:04Z
dc.date.accessioned2018-03-29T01:52:58Z
dc.date.available2018-03-29T01:52:58Z
dc.identifierPACIFIC JOURNAL OF MATHEMATICS, v.247, n.2, p.335-352, 2010
dc.identifier0030-8730
dc.identifierhttp://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000280822500005&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord
dc.identifierhttp://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000280822500005&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/1097
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/1097
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1308290
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionUsing Sigma theory we show that for large classes of groups G there is a subgroup H of finite index in Aut(G) such that for phi is an element of H the Reidemeister number R(phi) is infinite. This includes all finitely generated nonpolycyclic groups G that fall into one of the following classes: nilpotent-by-abelian groups of type FP(infinity); groups G/G `` of finite Prufer rank; groups G of type FP(2) without free nonabelian subgroups and with nonpolycyclic maximal metabelian quotient; some direct products of groups; or the pure symmetric automorphism group. Using a different argument we show that the result also holds for 1-ended nonabelian nonsurface limit groups. In some cases, such as with the generalized Thompson`s groups F(n,0) and their finite direct products, H = Aut(G).
dc.description247
dc.description2
dc.description335
dc.description352
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherPACIFIC JOURNAL MATHEMATICS
dc.publisherEstados Unidos
dc.relationPacific Journal of Mathematics
dc.rightsaberto
dc.rightsCopyright PACIFIC JOURNAL MATHEMATICS
dc.sourceWOS
dc.subjectReidemeister class
dc.subjectThompson group
dc.subjectSigma theory
dc.subjectautomorphism of groups
dc.subjectR(infinity) property
dc.subjectlimit group
dc.subjectNEUMANN-STREBEL INVARIANT
dc.subjectHIGHER GEOMETRIC INVARIANTS
dc.subjectTHOMPSONS GROUP F
dc.subjectFINITENESS PROPERTIES
dc.subjectSOLITAR GROUPS
dc.subjectLIMIT GROUPS
dc.subjectAUTOMORPHISMS
dc.subjectVALUATIONS
dc.subjectPRODUCTS
dc.subjectBAUMSLAG
dc.subjectMathematics
dc.titleSIGMA THEORY AND TWISTED CONJUGACY CLASSES
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución