Artículos de revistas
On The Singular Scheme Of Split Foliations
Registro en:
On The Singular Scheme Of Split Foliations. Indiana Univ Math Journal, v. 64, p. 1359-1381 2015.
0022-2518
WOS:000364888600004
Autor
Correa
Mauricio
Jr.; Jardim
Marcos; Martins
Renato Vidal
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) We prove that the tangent sheaf of a codimension-one locally free distribution splits as a sum of line bundles if and only if its singular scheme is arithmetically Cohen-Macaulay. In addition, we show that a foliation by curves is given by an intersection of generically transversal holomorphic distributions of codimension one if and only if its singular scheme is arithmetically Buchsbaum. Finally, we establish that these foliations are determined by their singular schemes, and deduce that the Hilbert scheme of certain arithmetically Buchsbaum schemes of codimension 2 is birational to a Grassmannian. 64 5
1359 1381 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq [302477/2010-1] FAPESP [2014/14743-8]