Artículos de revistas
Functional And Evolutionary Analyses Of The Mir156 And Mir529 Families In Land Plants
Registro en:
Bmc Plant Biology. Biomed Central Ltd., v. 16, n. 1, p. , 2016.
14712229
10.1186/s12870-016-0716-5
2-s2.0-84957440363
Institución
Resumen
Background: MicroRNAs (miRNAs) are important regulatory elements of gene expression. Similarly to coding genes, miRNA genes follow a birth and death pattern of evolution likely reflecting functional relevance and divergence. For instance, miRNA529 is evolutionarily related to miRNA156 (a highly conserved miRNA in land plants), but it is lost in Arabidopsis thaliana. Interestingly, both miRNAs target sequences overlap in some members of the SQUAMOSA promoter-binding protein like (SPL) family, raising important questions regarding the diversification of the miR156/miR529-associated regulatory network in land plants. Results: In this study, through phylogenic reconstruction of miR156/529 target sequences from several taxonomic groups, we have found that specific eudicot SPLs, despite miRNA529 loss, retained the corresponding target site. Detailed molecular evolutionary analyses of miR156/miR529-target sequence showed that loss of miR529 in core eudicots, such as Arabidopsis, is correlated with a more relaxed selection of the miRNA529 specific target element, while miRNA156-specific target sequence is under stronger selection, indicating that these two target sites might be under distinct evolutionary constraints. Importantly, over-expression in Arabidopsis of MIR529 precursor from a monocot, but not from a basal eudicot, demonstrates specific miR529 regulation of AtSPL9 and AtSPL15 genes, which contain conserved responsive elements for both miR156 and miR529. Conclusions: Our results suggest loss of functionality of MIR529 genes in the evolutionary history of eudicots and show that the miR529-responsive element present in some eudicot SPLs is still functional. Our data support the notion that particular miRNA156 family members might have compensated for the loss of miR529 regulation in eudicot species, which concomitantly may have favored diversification of eudicot SPLs. © 2016 Morea et al. 16 1
Axtell, M.J., Westholm, J.O., Lai, E.C., Vive la differénce: biogenesis and evolution of microRNAs in plants and animals (2011) Genome Biol, 2, p. 221 Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spataford, J.W., Carrington, J.C., Evolution of microRNAs genes by inverted duplication of target gene sequences in Arabidopsis thaliana (2004) Nat Genet, 36, pp. 1282-1290 Lu, C., Tej, S.S., Luo, S., Haudenschild, C.D., Meyers, B.C., Green, P.J., Elucidation of the small RNA component of the transcriptome (2005) Science, 309, pp. 1567-1569 Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Genome-wide profiling and analysis of Arabidopsis siRNAs (2007) PLoS Biol, 15, p. e57 Felippes, F.F., Schneeberger, K., Dezulian, T., Huson, D.H., Weigel, D., Evolution of Arabidopsis thaliana microRNAs from random sequences (2008) RNA, 14, pp. 2455-2459 Piriyapongsa, J., Jordan, I.K., Dual coding of siRNAs and miRNAs by plant transposable elements (2008) RNA, 14, pp. 814-821 Rajagopalan, R., Vaucheret, H., Trejo, J., Bartel, D.P., A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana (2006) Genes Dev, 20, pp. 3407-3425 Creasey, K.M., Zhai, J., Borges, F., Ex, F., Regulski, M., Meyers, B.C., miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis (2014) Nature, 508, pp. 411-415 Zhao, M., Meyers, B.C., Cai, C., Xu, W., Ma, J., Evolutionary patterns and coevolutionary consequences of MIRNA genes and MicroRNA targets triggered by multiple mechanisms of genomic duplications in soybean (2015) Plant Cell, 27, pp. 546-562 Gu, W., Wang, X., Zhai, C., Xie, X., Zhou, T., Selection on synonymous sites for increased accessibility around miRNA binding sites in plants (2012) Mol Biol Evol, 29 (10), pp. 3037-3044 Axtell, M.J., Bartel, D.P., Antiquity of microRNAs and their targets in land plants (2005) Plant Cell, 17, pp. 1658-1673 Cuperus, J.T., Fahlgren, N., Carrington, C., Evolution and functional diversification of MIRNA genes (2011) Plant Cell, 23, pp. 431-442 Montes, R.A., de Fátima Rosas-Cárdenas, F., Paoli, E., Accerbi, M., Rymarquis, L.A., Mahalingam, G., Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs (2014) Nat Commun, 5, p. 3722 Ortiz-Morea, F.A., Vicentini, R., Silva, G.F., Silva, E.M., Carrer, H., Rodrigues, A.P., Global analysis of the sugarcane microtranscriptome reveals a nique composition of small RNA associated with axillary bud outgrowth (2013) J Exp Bot, 64, pp. 2307-2320 Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Barte, B., Barte, D.P., Prediction of plant microRNA targets (2002) Cell, 110, pp. 513-520 Klein, J., Saedler, H., Huijser, P., A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA (1996) Mol Gen Genet, 250, pp. 7-16 Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M.E., Weigel, D., Specific effects of MicroRNAs on the plant transcriptome (2005) Dev Cell, 8, pp. 517-527 Chuck, G., Cigan, A., Saeteurn, K., Hake, S., The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA (2007) Nat Genet, 39, pp. 544-549 Wang, J.W., Czech, B., Weigel, D., miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana (2009) Cell, 138, pp. 738-749 Nodine, M.D., Bartel, D.P., MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis (2010) Genes Dev, 24, pp. 2678-2692 Yu, N., Cai, W.J., Wang, S., Shan, C.M., Wang, L.J., Chen, X.Y., Temporal control of trichome distribution by microRNA 156-targeted SPL genes in Arabidopsis thaliana (2010) Plant Cell, 22, pp. 2322-2335 Gou, J.Y., Felippes, F.F., Liu, C.J., Weigel, D., Wang, J.W., Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor (2011) Plant Cell, 23, pp. 1512-1522 Silva, G.F.F., Silva, E.M., Azevedo, M.S., Guivin, M.A.C., Ramiro, D.A., Figueiredo, C.R., microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development (2014) Plant J, 78, pp. 604-618 Ling, L.Z., Zhang, S.D., Exploring the evolutionary differences of SBP-box genes targeted by miR156 and miR529 in plants (2012) Genetica, 140, pp. 317-324 Zhang, S.D., Ling, L.Z., Zhang, Q.F., Xu, J.D., Cheng, L., Evolutionary comparison of two combinatorial regulators of SBP-Box genes, MiR156 and MiR529, in plants (2015) PLoS One, 10, p. e0124621 Jeong, D.H., Park, S., Zhai, J., Gurazada, S.G., Paoli, E., Meyers, B.C., Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage (2011) Plant Cell, 23 (12), pp. 4185-4207 Arif, M.A., Fattash, I., Ma, Z., Cho, S.H., Beike, A.K., Reski, R., DICER-LIKE3 activity in Physcomitrella patens DICER-LIKE4 mutants causes severe developmental dysfunction and sterility (2012) Mol Plant, 5, pp. 1281-1294 Dai, X., Zhao, P.X., psRNATarget: a plant small RNA target analysis server (2011) Nucleic Acids Res, 39 (WEB SERVER ISSUE), pp. W155-W159 Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., Huijser, P., The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis (2008) Plant Mol Biol, 67 (1-2), pp. 183-195 Preston, J.C., Hileman, L.C., Functional evolution in the plant SQUAMOSA-PROMOTER BINDING-LIKE (SPL) gene family (2013) Front Plant Sci, 4 (80), pp. 1-13 Fahlgren, N., Jogdeo, S., Kasschau, K.D., Sullivan, C.M., Chapman, E.J., Laubinger, S., MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana (2010) Plant Cell, 22 (4), pp. 1074-1089 Chen, K., Rajewsky, N., The evolution of gene regulation by transcription factors and microRNAs (2007) Nat Rev Genet, 8, pp. 93-103 Taylor, R.S., Tarver, J.E., Hiscock, S.J., Donoghue, P.C.J., Evolutionary history of plant microRNAs (2014) Trends Plant Sci, 19, pp. 175-182 Puzey, J.R., Kramer, E.M., Identification of conserved Aquilegia corulea microRNAs and their targets (2009) Gene, 448, pp. 46-56 Odell, J.T., Nagy, F., Chua, N.-H., Identification of DNA sequences required for activity of the cauliflower mosaic virus-35S promoter (1985) Nature, 313, pp. 810-812 Barakat, A., Wall, K., Leebens-Mack, J., Wang, Y.J., Carlson, J.E., Depamphilis, C.W., Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants (2007) Plant J, 51, pp. 991-1003 Jeong, D.H., Szchmidt, S.A., Rymarquis, L.A., Park, S., Ganssmann, M., German, M.A., Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon (2013) Genome Biol, 24, p. R145 Xie, K., Shen, J., Hou, X., Yao, J., Li, X., Xiao, J., Gradual increase of miR156 regulates temporal expressin changes of numerous genes during leaf development in rice (2012) Plant Physiol, 158, pp. 1382-1394 Wang, J.W., Schwab, R., Czech, B., Mica, E., Weigel, D., Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana (2008) Plant Cell, 20, pp. 1231-1243 Addo-Quaye, C., Eshoo, T.W., Bartel, D.P., Axtell, M.J., Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome (2008) Curr Biol, 18, pp. 758-762 Meng, Y., Gou, L., Chen, D., Wu, P., Chen, M., High-throughput degradome sequencing can be used to gain insights into microRNA precursor metabolism (2010) J Exp Bot, 61, pp. 3833-3837 Jones-Rhoades, M., Bartel, D., Computational identification of plant microRNAs and their targets, including a stress-induced miRNA (2004) Mol Cell, 14, pp. 787-799 Poethig, R.S., Vegetative phase change and shoot maturation in plants (2013) Curr Top Dev Biol, 105, pp. 125-152 Chuck, G., Whipple, C., Jackson, D., Hake, S., The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries (2010) Development, 137, pp. 1243-1250 Jeong, D.H., Thatcher, S.R., Brown, R.S., Zhai, J., Park, S., Rymarquis, L.A., Comprehensive investigation of microRNAs enhanced by analysis of sequence variants, expression patterns, ARGONAUTE loading, and target cleavage (2013) Plant Physiol, 162, pp. 1225-1245 Clough, S.J., Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana (1998) Plant J, 16, pp. 735-743 Karimi, M., Inzé, D., Depicker, A., GATEWAY vectors for Agrobacterium-mediated plant transformation (2002) Trends Plant Sci, 7, pp. 193-195 Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F., Hellens, R.P., Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs (2007) Plant Methods, 3, pp. 1-12 Javelle, M., Timmermans, M.C.P., In situ localization of small RNAs in plants by using LNA probes (2012) Nat Protoc, 7, pp. 533-541 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28 (10), pp. 2731-2739 Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797 Xia, X., DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution (2013) Mol Biol Evol, 30, pp. 1720-1728 Darriba, D., Taboada, G.L., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing (2012) Nat Methods, 9 (8), p. 772 Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Systs Biol, 59 (3), pp. 307-321 Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol Biol Evol, 29, pp. 1969-1973 Anisimova, M., Gascuel, O., Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative (2006) Systs Biol, 55, pp. 539-552 Zhang, Z., Li, J.L., Zhao, X.-Q., Wang, J., Wong, G.-S., Yu, J., KaKs calculator: calculating Ka and Ks through model selection and model averaging (2006) Genomics Proteomics Bioinfomatics, 4, pp. 259-263 Louis, A., Nguyen, N.T.T., Muffato, M., Crollius, H.R., Genomicus update 2015: KaryoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics (2015) Nucleic Acids Res, 43, pp. D682-D689 Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31, pp. 3406-3415