dc.date | 2016 | |
dc.date | 2016-06-03T20:15:48Z | |
dc.date | 2016-06-03T20:15:48Z | |
dc.date.accessioned | 2018-03-29T01:34:23Z | |
dc.date.available | 2018-03-29T01:34:23Z | |
dc.identifier | | |
dc.identifier | Bmc Plant Biology. Biomed Central Ltd., v. 16, n. 1, p. , 2016. | |
dc.identifier | 14712229 | |
dc.identifier | 10.1186/s12870-016-0716-5 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84957440363&partnerID=40&md5=b509d93849e9e9f050e73fbebce4a909 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/238491 | |
dc.identifier | 2-s2.0-84957440363 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1305152 | |
dc.description | Background: MicroRNAs (miRNAs) are important regulatory elements of gene expression. Similarly to coding genes, miRNA genes follow a birth and death pattern of evolution likely reflecting functional relevance and divergence. For instance, miRNA529 is evolutionarily related to miRNA156 (a highly conserved miRNA in land plants), but it is lost in Arabidopsis thaliana. Interestingly, both miRNAs target sequences overlap in some members of the SQUAMOSA promoter-binding protein like (SPL) family, raising important questions regarding the diversification of the miR156/miR529-associated regulatory network in land plants. Results: In this study, through phylogenic reconstruction of miR156/529 target sequences from several taxonomic groups, we have found that specific eudicot SPLs, despite miRNA529 loss, retained the corresponding target site. Detailed molecular evolutionary analyses of miR156/miR529-target sequence showed that loss of miR529 in core eudicots, such as Arabidopsis, is correlated with a more relaxed selection of the miRNA529 specific target element, while miRNA156-specific target sequence is under stronger selection, indicating that these two target sites might be under distinct evolutionary constraints. Importantly, over-expression in Arabidopsis of MIR529 precursor from a monocot, but not from a basal eudicot, demonstrates specific miR529 regulation of AtSPL9 and AtSPL15 genes, which contain conserved responsive elements for both miR156 and miR529. Conclusions: Our results suggest loss of functionality of MIR529 genes in the evolutionary history of eudicots and show that the miR529-responsive element present in some eudicot SPLs is still functional. Our data support the notion that particular miRNA156 family members might have compensated for the loss of miR529 regulation in eudicot species, which concomitantly may have favored diversification of eudicot SPLs. © 2016 Morea et al. | |
dc.description | 16 | |
dc.description | 1 | |
dc.description | | |
dc.description | | |
dc.description | Axtell, M.J., Westholm, J.O., Lai, E.C., Vive la differénce: biogenesis and evolution of microRNAs in plants and animals (2011) Genome Biol, 2, p. 221 | |
dc.description | Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spataford, J.W., Carrington, J.C., Evolution of microRNAs genes by inverted duplication of target gene sequences in Arabidopsis thaliana (2004) Nat Genet, 36, pp. 1282-1290 | |
dc.description | Lu, C., Tej, S.S., Luo, S., Haudenschild, C.D., Meyers, B.C., Green, P.J., Elucidation of the small RNA component of the transcriptome (2005) Science, 309, pp. 1567-1569 | |
dc.description | Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Genome-wide profiling and analysis of Arabidopsis siRNAs (2007) PLoS Biol, 15, p. e57 | |
dc.description | Felippes, F.F., Schneeberger, K., Dezulian, T., Huson, D.H., Weigel, D., Evolution of Arabidopsis thaliana microRNAs from random sequences (2008) RNA, 14, pp. 2455-2459 | |
dc.description | Piriyapongsa, J., Jordan, I.K., Dual coding of siRNAs and miRNAs by plant transposable elements (2008) RNA, 14, pp. 814-821 | |
dc.description | Rajagopalan, R., Vaucheret, H., Trejo, J., Bartel, D.P., A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana (2006) Genes Dev, 20, pp. 3407-3425 | |
dc.description | Creasey, K.M., Zhai, J., Borges, F., Ex, F., Regulski, M., Meyers, B.C., miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis (2014) Nature, 508, pp. 411-415 | |
dc.description | Zhao, M., Meyers, B.C., Cai, C., Xu, W., Ma, J., Evolutionary patterns and coevolutionary consequences of MIRNA genes and MicroRNA targets triggered by multiple mechanisms of genomic duplications in soybean (2015) Plant Cell, 27, pp. 546-562 | |
dc.description | Gu, W., Wang, X., Zhai, C., Xie, X., Zhou, T., Selection on synonymous sites for increased accessibility around miRNA binding sites in plants (2012) Mol Biol Evol, 29 (10), pp. 3037-3044 | |
dc.description | Axtell, M.J., Bartel, D.P., Antiquity of microRNAs and their targets in land plants (2005) Plant Cell, 17, pp. 1658-1673 | |
dc.description | Cuperus, J.T., Fahlgren, N., Carrington, C., Evolution and functional diversification of MIRNA genes (2011) Plant Cell, 23, pp. 431-442 | |
dc.description | Montes, R.A., de Fátima Rosas-Cárdenas, F., Paoli, E., Accerbi, M., Rymarquis, L.A., Mahalingam, G., Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs (2014) Nat Commun, 5, p. 3722 | |
dc.description | Ortiz-Morea, F.A., Vicentini, R., Silva, G.F., Silva, E.M., Carrer, H., Rodrigues, A.P., Global analysis of the sugarcane microtranscriptome reveals a nique composition of small RNA associated with axillary bud outgrowth (2013) J Exp Bot, 64, pp. 2307-2320 | |
dc.description | Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Barte, B., Barte, D.P., Prediction of plant microRNA targets (2002) Cell, 110, pp. 513-520 | |
dc.description | Klein, J., Saedler, H., Huijser, P., A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA (1996) Mol Gen Genet, 250, pp. 7-16 | |
dc.description | Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M.E., Weigel, D., Specific effects of MicroRNAs on the plant transcriptome (2005) Dev Cell, 8, pp. 517-527 | |
dc.description | Chuck, G., Cigan, A., Saeteurn, K., Hake, S., The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA (2007) Nat Genet, 39, pp. 544-549 | |
dc.description | Wang, J.W., Czech, B., Weigel, D., miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana (2009) Cell, 138, pp. 738-749 | |
dc.description | Nodine, M.D., Bartel, D.P., MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis (2010) Genes Dev, 24, pp. 2678-2692 | |
dc.description | Yu, N., Cai, W.J., Wang, S., Shan, C.M., Wang, L.J., Chen, X.Y., Temporal control of trichome distribution by microRNA 156-targeted SPL genes in Arabidopsis thaliana (2010) Plant Cell, 22, pp. 2322-2335 | |
dc.description | Gou, J.Y., Felippes, F.F., Liu, C.J., Weigel, D., Wang, J.W., Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor (2011) Plant Cell, 23, pp. 1512-1522 | |
dc.description | Silva, G.F.F., Silva, E.M., Azevedo, M.S., Guivin, M.A.C., Ramiro, D.A., Figueiredo, C.R., microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development (2014) Plant J, 78, pp. 604-618 | |
dc.description | Ling, L.Z., Zhang, S.D., Exploring the evolutionary differences of SBP-box genes targeted by miR156 and miR529 in plants (2012) Genetica, 140, pp. 317-324 | |
dc.description | Zhang, S.D., Ling, L.Z., Zhang, Q.F., Xu, J.D., Cheng, L., Evolutionary comparison of two combinatorial regulators of SBP-Box genes, MiR156 and MiR529, in plants (2015) PLoS One, 10, p. e0124621 | |
dc.description | Jeong, D.H., Park, S., Zhai, J., Gurazada, S.G., Paoli, E., Meyers, B.C., Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage (2011) Plant Cell, 23 (12), pp. 4185-4207 | |
dc.description | Arif, M.A., Fattash, I., Ma, Z., Cho, S.H., Beike, A.K., Reski, R., DICER-LIKE3 activity in Physcomitrella patens DICER-LIKE4 mutants causes severe developmental dysfunction and sterility (2012) Mol Plant, 5, pp. 1281-1294 | |
dc.description | Dai, X., Zhao, P.X., psRNATarget: a plant small RNA target analysis server (2011) Nucleic Acids Res, 39 (WEB SERVER ISSUE), pp. W155-W159 | |
dc.description | Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., Huijser, P., The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis (2008) Plant Mol Biol, 67 (1-2), pp. 183-195 | |
dc.description | Preston, J.C., Hileman, L.C., Functional evolution in the plant SQUAMOSA-PROMOTER BINDING-LIKE (SPL) gene family (2013) Front Plant Sci, 4 (80), pp. 1-13 | |
dc.description | Fahlgren, N., Jogdeo, S., Kasschau, K.D., Sullivan, C.M., Chapman, E.J., Laubinger, S., MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana (2010) Plant Cell, 22 (4), pp. 1074-1089 | |
dc.description | Chen, K., Rajewsky, N., The evolution of gene regulation by transcription factors and microRNAs (2007) Nat Rev Genet, 8, pp. 93-103 | |
dc.description | Taylor, R.S., Tarver, J.E., Hiscock, S.J., Donoghue, P.C.J., Evolutionary history of plant microRNAs (2014) Trends Plant Sci, 19, pp. 175-182 | |
dc.description | Puzey, J.R., Kramer, E.M., Identification of conserved Aquilegia corulea microRNAs and their targets (2009) Gene, 448, pp. 46-56 | |
dc.description | Odell, J.T., Nagy, F., Chua, N.-H., Identification of DNA sequences required for activity of the cauliflower mosaic virus-35S promoter (1985) Nature, 313, pp. 810-812 | |
dc.description | Barakat, A., Wall, K., Leebens-Mack, J., Wang, Y.J., Carlson, J.E., Depamphilis, C.W., Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants (2007) Plant J, 51, pp. 991-1003 | |
dc.description | Jeong, D.H., Szchmidt, S.A., Rymarquis, L.A., Park, S., Ganssmann, M., German, M.A., Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon (2013) Genome Biol, 24, p. R145 | |
dc.description | Xie, K., Shen, J., Hou, X., Yao, J., Li, X., Xiao, J., Gradual increase of miR156 regulates temporal expressin changes of numerous genes during leaf development in rice (2012) Plant Physiol, 158, pp. 1382-1394 | |
dc.description | Wang, J.W., Schwab, R., Czech, B., Mica, E., Weigel, D., Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana (2008) Plant Cell, 20, pp. 1231-1243 | |
dc.description | Addo-Quaye, C., Eshoo, T.W., Bartel, D.P., Axtell, M.J., Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome (2008) Curr Biol, 18, pp. 758-762 | |
dc.description | Meng, Y., Gou, L., Chen, D., Wu, P., Chen, M., High-throughput degradome sequencing can be used to gain insights into microRNA precursor metabolism (2010) J Exp Bot, 61, pp. 3833-3837 | |
dc.description | Jones-Rhoades, M., Bartel, D., Computational identification of plant microRNAs and their targets, including a stress-induced miRNA (2004) Mol Cell, 14, pp. 787-799 | |
dc.description | Poethig, R.S., Vegetative phase change and shoot maturation in plants (2013) Curr Top Dev Biol, 105, pp. 125-152 | |
dc.description | Chuck, G., Whipple, C., Jackson, D., Hake, S., The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries (2010) Development, 137, pp. 1243-1250 | |
dc.description | Jeong, D.H., Thatcher, S.R., Brown, R.S., Zhai, J., Park, S., Rymarquis, L.A., Comprehensive investigation of microRNAs enhanced by analysis of sequence variants, expression patterns, ARGONAUTE loading, and target cleavage (2013) Plant Physiol, 162, pp. 1225-1245 | |
dc.description | Clough, S.J., Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana (1998) Plant J, 16, pp. 735-743 | |
dc.description | Karimi, M., Inzé, D., Depicker, A., GATEWAY vectors for Agrobacterium-mediated plant transformation (2002) Trends Plant Sci, 7, pp. 193-195 | |
dc.description | Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F., Hellens, R.P., Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs (2007) Plant Methods, 3, pp. 1-12 | |
dc.description | Javelle, M., Timmermans, M.C.P., In situ localization of small RNAs in plants by using LNA probes (2012) Nat Protoc, 7, pp. 533-541 | |
dc.description | Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948 | |
dc.description | Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28 (10), pp. 2731-2739 | |
dc.description | Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797 | |
dc.description | Xia, X., DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution (2013) Mol Biol Evol, 30, pp. 1720-1728 | |
dc.description | Darriba, D., Taboada, G.L., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing (2012) Nat Methods, 9 (8), p. 772 | |
dc.description | Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Systs Biol, 59 (3), pp. 307-321 | |
dc.description | Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol Biol Evol, 29, pp. 1969-1973 | |
dc.description | Anisimova, M., Gascuel, O., Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative (2006) Systs Biol, 55, pp. 539-552 | |
dc.description | Zhang, Z., Li, J.L., Zhao, X.-Q., Wang, J., Wong, G.-S., Yu, J., KaKs calculator: calculating Ka and Ks through model selection and model averaging (2006) Genomics Proteomics Bioinfomatics, 4, pp. 259-263 | |
dc.description | Louis, A., Nguyen, N.T.T., Muffato, M., Crollius, H.R., Genomicus update 2015: KaryoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics (2015) Nucleic Acids Res, 43, pp. D682-D689 | |
dc.description | Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31, pp. 3406-3415 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | BioMed Central Ltd. | |
dc.relation | BMC Plant Biology | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Functional And Evolutionary Analyses Of The Mir156 And Mir529 Families In Land Plants | |
dc.type | Artículos de revistas | |
dc.type | Nota | |