Artículos de revistas
Natural And Waste Hydrocarbon Precursors For The Synthesis Of Carbon Based Nanomaterials: Graphene And Cnts
Registro en:
Renewable And Sustainable Energy Reviews. Elsevier Ltd, v. 58, p. 976 - 1006, 2016.
13640321
10.1016/j.rser.2015.12.120
2-s2.0-84954286172
Institución
Resumen
Carbon nanomaterials have huge potential in the field of energy and environmental applications. However, a wide range of greener and environment friendly synthesis methods utilizing natural, renewable, cheaper waste materials has to be developed. This will lead to the reduction of green house gases, exploitation of toxic materials and helps in the development of sustainable technologies. In this review, the details progress made in the last ten years concerning the synthesis of new one dimensional (carbon nanotubes CNT, carbon nanofiber) and two dimensional (graphene) carbon based materials using natural precursors and waste materials is summarized. The aim of this review paper is to provide a comprehensive scientific progress of synthesis of graphene and carbon nanotubes using natural precursor and waste materials for the future perspective. This paper also concludes with a brief discussion on the impact of natural precursor for the graphene and CNTs for environment, its toxicological effects and its future prospects in this rapidly emerging field. Natural precursors and waste carbon containing products are emerging as a new class of materials that have efficiency to produce graphene and CNTs. The various synthesis processes of graphene, CNTs and carbon dots has been reported using several natural hydrocarbon precursors (turpentine oil, eucalyptus oil, palm oil, neem oil, sunflower oil, castor oil, biodiesel, tea-tree extract, honey, milk, sugar, butter, egg etc.). Also, some research groups have used foods wastes (cookie and chocolate), vegetation wastes (woods, leaf, grass, fruit wastes), animal/bird/insect wastes (bone and cow dung, dog feces, chicken feather) and agro waste (sugarcane bagasse) for the synthesis of graphene and CNTs. Research on natural hydrocarbon precursors and wastage materials has increased in recent years as they promise to produce better and high quality of graphene and CNTs in large quantities. The fascinating aspect of this research area is that it guides the use of natural hydrocarbons to explore the possibilities of improving graphene stability and robustness suitable for different type of applications. © 2015 Elsevier Ltd. All rights reserved. 58
976 1006 CONICYT, Comisión Nacional de Investigación Científica y Tecnológica Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., C60: Buckminsterfullerene (1985) Nature, 318 (6042), pp. 162-163 Iijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354 (6348), pp. 56-58 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669 Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: A review of graphene (2010) Chem Rev, 110 (1), pp. 132-145 Mao, H.Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A.A., Graphene: Promises, facts, opportunities, and challenges in nanomedicine (2013) Chem Rev, 113 (5), pp. 3407-3424 Dupuis, A.-C., The catalyst in the CCVD of carbon nanotubes - A review (2005) Prog Mater Sci, 50 (8), pp. 929-961 Scardamaglia, M., Struzzi, C., Aparicio Rebollo, F.J., De Marco, P., Mudimela, P.R., Colomer, J.-F., Tuning electronic properties of carbon nanotubes by nitrogen grafting: Chemistry and chemical stability (2015) Carbon, 83, pp. 118-127 Geng, X., Li, L., Li, F., Carbon nanotubes/activated carbon hybrid with ultrahigh surface area for electrochemical capacitors (2015) Electrochim Acta, 168, pp. 25-31 Kumar, A., Maschmann, M.R., Hodson, S.L., Baur, J., Fisher, T.S., Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability (2015) Carbon, 84, pp. 236-245 Motta, M., Li, I.K., Windle, A., Mechanical properties of continuously spun fibers of carbon nanotubes (2005) Nano Lett, 5 (8), pp. 1529-1533 Byrne, M.T., Gun'Ko, Y.K., Recent advances in research on carbon nanotube-polymer composites (2010) Adv Mater, 22 (15), pp. 1672-1688 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Two-dimensional gas of massless Dirac fermions in graphene (2005) Nature, 438 (7065), pp. 197-200 Lee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene (2008) Science, 321 (5887), pp. 385-388 Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Superior thermal conductivity of single-layer graphene (2008) Nano Lett, 8 (3), pp. 902-907 Vashist, S.K., Luong, J.H.T., Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites (2015) Carbon, 84, pp. 519-550 Wu, X., Yang, D., Wang, C., Jiang, Y., Wei, T., Fan, Z., Functionalized three-dimensional graphene networks for high performance supercapacitors (2015) Carbon, 92, pp. 26-30 Xue, Y., Liu, Y., Lu, F., Qu, J., Chen, H., Dai, L., Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications (2012) J Phys Chem Lett, 3 (12), pp. 1607-1612 Low, T., Avouris, P., Graphene plasmonics for terahertz to mid-infrared applications (2014) ACS Nano, 8 (2), pp. 1086-1101 Essig, S., Marquardt, C.W., Vijayaraghavan, A., Ganzhorn, M., Dehm, S., Hennrich, F., Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene (2010) Nano Lett, 10 (5), pp. 1589-1594 De, M., Chou, S.S., Dravid, V.P., Graphene oxide as an enzyme inhibitor: Modulation of activity of α-chymotrypsin (2011) J Am Chem Soc, 133 (44), pp. 17524-17527 Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M., Layered graphene/quantum dots for photovoltaic devices (2010) Angew Chem Int Ed, 49 (17), pp. 3014-3017 Liu, J., Cui, L., Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications (2013) Acta Biomater, 9 (12), pp. 9243-9257 Pumera, M., Graphene in biosensing (2011) Mater Today, 14 (7-8), pp. 308-315 Yang, Y., Asiri, A.M., Tang, Z., Du, D., Lin, Y., Graphene based materials for biomedical applications (2013) Mater Today, 16 (10), pp. 365-373 Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Large-scale synthesis of aligned carbon nanotubes (1996) Science, 274 (5293), pp. 1701-1703 Bronikowski, M.J., CVD growth of carbon nanotube bundle arrays (2006) Carbon, 44 (13), pp. 2822-2832 Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Rühle, M., Kroto, H.W., Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols (2001) Chem Phys Lett, 338 (2-3), pp. 101-107 Zhang, Z.J., Wei, B.Q., Ramanath, G., Ajayan, P.M., Substrate-site selective growth of aligned carbon nanotubes (2000) Appl Phys Lett, 77 (23), pp. 3764-3766 Sen, R., Govindaraj, A., Rao, C.N.R., Carbon nanotubes by the metallocene route (1997) Chem Phys Lett, 267 (3-4), pp. 276-280 Sharma, S., Kalita, G., Hirano, R., Hayashi, Y., Tanemura, M., Influence of gas composition on the formation of graphene domain synthesized from camphor (2013) Mater Lett, 93, pp. 258-262 Afre, R.A., Soga, T., Jimbo, T., Kumar, M., Ando, Y., Sharon, M., Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies (2006) Microporous Mesoporous Mater, 96 (1-3), pp. 184-190 Ghosh, P., Afre, R.A., Soga, T., Jimbo, T., A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil (2007) Mater Lett, 61 (17), pp. 3768-3770 Kumar, R., Tiwari, R., Srivastava, O., Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: Neem oil (2011) Nanoscale Res Lett, 6 (1), p. 92 Suriani, A.B., Azira, A.A., Nik, S.F., Md Nor, R., Rusop, M., Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor (2009) Mater Lett, 63 (30), pp. 2704-2706 Jacob, M.V., Rawat, R.S., Ouyang, B., Bazaka, K., Kumar, D.S., Taguchi, D., Catalyst-free plasma enhanced growth of graphene from sustainable sources (2015) Nano Lett, 15 (9), pp. 5702-5708 Seo, D.H., Rider, A.E., Han, Z.J., Kumar, S., Ostrikov, K., Plasma break-down and re-build: Same functional vertical graphenes from diverse natural precursors (2013) Adv Mater, 25 (39), pp. 5638-5642 Wang, J., Wang, C.-F., Chen, S., Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns (2012) Angew Chem Int Ed, 51 (37), pp. 9297-9301 Kumar, R., Singh, R.K., Kumar, P., Dubey, P.K., Tiwari, R.S., Srivastava, O.N., Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotubes bundles using green botanical hydrocarbon precursor: Sesame oil (2014) Sci Adv Mater, 6 (1), pp. 76-83 Maheshwar, S., Madhuri, S., Natural precursors for synthesis of carbon nanomaterial (2010) Carbon Nano Forms and Applications: McGraw Hill Professional, , Access Engineering Wei, L., Yushin, G., Nanostructured activated carbons from natural precursors for electrical double layer capacitors (2012) Nano Energy, 1 (4), pp. 552-565 Kumar, M., Ando, Y., Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production (2010) J Nanosci Nanotechnol, 10 (6), pp. 3739-3758 Sharon, M., Sharon, M., Carbon nanomaterials and their synthesis from plant-derived precursors (2006) Synth React Inorg Metal-Org Nano-Met Chem, 36 (3), pp. 265-279 Terrones, M., Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes (2003) Annu Rev Mater Res, 33 (1), pp. 419-501 Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D., Aligned carbon nanotube arrays formed by cutting a polymer resin - Nanotube composite (1994) Science, 265 (5176), pp. 1212-1214 Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Continuous production of aligned carbon nanotubes: A step closer to commercial realization (1999) Chem Phys Lett, 303 (5-6), pp. 467-474 Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H., Self-oriented regular arrays of carbon nanotubes and their field emission properties (1999) Science, 283 (5401), pp. 512-514 Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E.L.G., Laser-induced porous graphene films from commercial polymers (2014) Nat Commun, p. 5 Peng, Z., Lin, J., Ye, R., Samuel, E.L.G., Tour, J.M., Flexible and stackable laser-induced graphene supercapacitors (2015) ACS Appl Mater Interfaces, 7 (5), pp. 3414-3419 Peng, Z., Ye, R., Mann, J.A., Zakhidov, D., Li, Y., Smalley, P.R., Flexible boron-doped laser-induced graphene microsupercapacitors (2015) ACS Nano, 9 (6), pp. 5868-5875 Ye, R., Peng, Z., Wang, T., Xu, Y., Zhang, J., Li, Y., In situ formation of metal oxide nanocrystals embedded in laser-induced graphene (2015) ACS Nano, 9 (9), pp. 9244-9251 Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J.M., Growth of graphene from solid carbon sources (2010) Nature, 468 (7323), pp. 549-552 Wei, D., Xu, X., Laser direct growth of graphene on silicon substrate (2012) Appl Phys Lett, 100 (2), p. 023110 Wang, Z., Zhao, Z., Qiu, J., Synthesis of branched carbon nanotubes from coal (2006) Carbon, 44 (7), pp. 1321-1324 Zhao, T., Liu, Y., Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures (2004) Carbon, 42 (12-13), pp. 2765-2768 Ajayan, P.M., Nanotubes from carbon (1999) Chem Rev, 99 (7), pp. 1787-1800 Ćirić-Marjanović, G., Pašti, I., Mentus, S., One-dimensional nitrogen-containing carbon nanostructures (2015) Prog Mater Sci, 69, pp. 61-182 Saifuddin, N., Raziah, A.Z., Junizah, A.R., Carbon nanotubes: A review on structure and their interaction with proteins (2013) J Chem, (2013), p. 18 Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., Methods for carbon nanotubes synthesis-review (2011) J Mater Chem, 21 (40), pp. 15872-15884 De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J., Carbon nanotubes: Present and future commercial applications (2013) Science, 339 (6119), pp. 535-539 Amelinckx, S., Bernaerts, D., Zhang, X.B., Van Tendeloo, G., Van Landuyt, J., A structure model and growth mechanism for multishell carbon nanotubes (1995) Science, 267 (5202), pp. 1334-1338 Titirici, M.-M., White, R.J., Brun, N., Budarin, V.L., Su, D.S., Del Monte, F., Sustainable carbon materials (2015) Chem Soc Rev, 44 (1), pp. 250-290 Su, D.S., The use of natural materials in nanocarbon synthesis (2009) ChemSusChem, 2 (11), pp. 1009-1020 Deng, J., You, Y., Sahajwalla, V., Joshi, R.K., Transforming waste into carbon-based nanomaterials (2016) Carbon, 96, pp. 105-115 Kalita, G., Masahiro, M., Uchida, H., Wakita, K., Umeno, M., Few layers of graphene as transparent electrode from botanical derivative camphor (2010) Mater Lett, 64 (20), pp. 2180-2183 Kalita, G., Wakita, K., Takahashi, M., Umeno, M., Iodine doping in solid precursor-based CVD growth graphene film (2011) J Mater Chem, 21 (39), pp. 15209-15213 Kalita, G., Wakita, K., Umeno, M., Monolayer graphene from a green solid precursor (2011) Phys E Low-dimens Syst Nanostruct, 43 (8), pp. 1490-1493 Ravani, F., Papagelis, K., Dracopoulos, V., Parthenios, J., Dassios, K.G., Siokou, A., Graphene production by dissociation of camphor molecules on nickel substrate (2013) Thin Solid Films, 527, pp. 31-37 Liu, W.-W., Aziz, A., Chai, S.-P., Mohamed, A.R., Tye, C.-T., The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition (2011) Phys E Low-dimens Syst Nanostruct, 43 (8), pp. 1535-1542 Kumar, M., Ando, Y., Single-wall and multi-wall carbon nanotubes from camphor - A botanical hydrocarbon (2003) Diam Relat Mater, 12 (10-11), pp. 1845-1850 Kumar, M., Ando, Y., Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support (2005) Carbon, 43 (3), pp. 533-540 Antunes, E.F., De Resende, V.G., Mengui, U.A., Cunha, J.B.M., Corat, E.J., Massi, M., Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing (2011) Appl Surf Sci, 257 (18), pp. 8038-8043 Kumar, M., Ando, Y., A simple method of producing aligned carbon nanotubes from an unconventional precursor - Camphor (2003) Chem Phys Lett, 374 (5-6), pp. 521-526 Kumar, M., Kakamu, K., Okazaki, T., Ando, Y., Field emission from camphor-pyrolyzed carbon nanotubes (2004) Chem Phys Lett, 385 (3-4), pp. 161-165 Andrews, R.J., Smith, C.F., Alexander, A.J., Mechanism of carbon nanotube growth from camphor and camphor analogs by chemical vapor deposition (2006) Carbon, 44 (2), pp. 341-347 Sharon, M., Hsu, W.K., Kroto, H.W., Walton, D.R.M., Kawahara, A., Ishihara, T., Camphor-based carbon nanotubes as an anode in lithium secondary batteries (2002) J Power Sources, 104 (1), pp. 148-153 Antunes, E.F., Almeida, E.C., Rosa, C.B.F., De Medeiros, L.I., Pardini, L.C., Massi, M., Thermal annealing and electrochemical purification of multi-walled carbon nanotubes produced by camphor/ferrocene mixtures (2010) J Nanosci Nanotechnol, 10 (2), pp. 1296-1303 Tang, J., Jin, G.-Q., Wang, Y.-Y., Guo, X.-Y., Tree-like carbon grown from camphor (2010) Carbon, 48 (5), pp. 1545-1551 Musso, S., Fanchini, G., Tagliaferro, A., Growth of vertically aligned carbon nanotubes by CVD by evaporation of carbon precursors (2005) Diam Relat Mater, 14 (3-7), pp. 784-789 Porro, S., Musso, S., Giorcelli, M., Tagliaferro, A., Dalal, S.H., Teo, K.B.K., Study of CNTs and nanographite grown by thermal CVD using different precursors (2006) J Non-Cryst Solids, 352 (9-20), pp. 1310-1313 Musso, S., Porro, S., Giorcelli, M., Chiodoni, A., Ricciardi, C., Tagliaferro, A., Macroscopic growth of carbon nanotube mats and their mechanical properties (2007) Carbon, 45 (5), pp. 1133-1136 Musso, S., Porro, S., Rovere, M., Giorcelli, M., Tagliaferro, A., Fluid dynamic analysis of gas flow in a thermal-CVD system designed for growth of carbon nanotubes (2008) J Cryst Growth, 310 (2), pp. 477-483 Pavese, M., Musso, S., Bianco, S., Giorcelli, M., Pugno, N., An analysis of carbon nanotube structure wettability before and after oxidation treatment (2008) J Phys Condens Matter, 20 (47), p. 474206 Kumar, M., Ando, Y., Camphor-a botanical precursor producing garden of carbon nanotubes (2003) Diam Relat Mater, 12 (3-7), pp. 998-1002 Somani, S.P., Somani, P.R., Tanemura, M., Lau, S.P., Umeno, M., Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission (2009) Curr Appl Phys, 9 (1), pp. 144-150 Porro, S., Musso, S., Giorcelli, M., Chiodoni, A., Tagliaferro, A., Optimization of a thermal-CVD system for carbon nanotube growth (2007) Phys E Low-dimens Syst Nanostruct, 37 (1-2), pp. 16-20 Jana, D., Sun, C.-L., Chen, L.-C., Chen, K.-H., Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes (2013) Prog Mater Sci, 58 (5), pp. 565-635 Maiti, U.N., Lee, W.J., Lee, J.M., Oh, Y., Kim, J.Y., Kim, J.E., 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices (2014) Adv Mater, 26 (1), pp. 40-67 Ghosh, K., Kumar, M., Maruyama, T., Ando, Y., Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources (2009) Carbon, 47 (6), pp. 1565-1575 Chatterjee, A.K., Sharon, M., Banerjee, R., Neumann-Spallart, M., CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors (2003) Electrochim Acta, 48 (23), pp. 3439-3446 Afre, R.A., Soga, T., Jimbo, T., Kumar, M., Ando, Y., Sharon, M., Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil (2005) Chem Phys Lett, 414 (1-3), pp. 6-10 Ghosh, P., Soga, T., Afre, R.A., Jimbo, T., Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpentine oil (2008) J Alloy Compd, 462 (1-2), pp. 289-293 Ghosh, P., Soga, T., Ghosh, K., Afre, R.A., Jimbo, T., Ando, Y., Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene (2008) J Non-Cryst Solids, 354 (34), pp. 4101-4106 Awasthi, K., Kumar, R., Tiwari, R.S., Srivastava, O.N., Large scale synthesis of bundles of aligned carbon nanotubes using a natural precursor: Turpentine oil (2010) J Exp Nanosci, 5 (6), pp. 498-508 Kumar, R., Yadav, R.M., Awasthi, K., Tiwari, R.S., Srivastava, O.N., Effect of nitrogen variation on the synthesis of vertically aligned bamboo-shaped C-N nanotubes using sunflower oil (2011) Int J Nanosci, 10 (4-5), pp. 809-813 Kumar, R., Yadav, R.M., Awasthi, K., Shripathi, T., Sinha, A.S.K., Tiwari, R.S., Synthesis of carbon and carbon-nitrogen nanotubes using green precursor: Jatropha-derived biodiesel (2012) J Exp Nanosci, 8 (4), pp. 606-620 Awasthi, K., Kumar, R., Raghubanshi, H., Awasthi, S., Pandey, R., Singh, D., Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials (2011) Bull Mater Sci, 34 (4), pp. 607-614 Termehyousefi, A., Bagheri, S., Shinji, K., Rouhi, J., Rusop Mahmood, M., Ikeda, S., Fast synthesis of multilayer carbon nanotubes from camphor oil as an camphor oil as an energy storage material (2014) BioMed Res Int, (2014), p. 6 Seo, D.H., Han, Z.J., Kumar, S., Ostrikov, K., Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance (2013) Adv Energy Mater, 3 (10), pp. 1316-1323 Seo, D.H., Yick, S., Han, Z.J., Fang, J.H., Ostrikov, K., Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes (2014) ChemSusChem, 7 (8), pp. 2317-2324 Seo, D.H., Yick, S., Pineda, S., Su, D., Wang, G., Han, Z.J., Single-step, plasma-enabled reforming of natural precursors into vertical graphene electrodes with high areal capacitance (2015) ACS Sustai Chem Eng, 3 (3), pp. 544-551 Ruan, G., Sun, Z., Peng, Z., Tour, J.M., Growth of graphene from food, insects, and waste (2011) ACS Nano, 5 (9), pp. 7601-7607 Akhavan, O., Bijanzad, K., Mirsepah, A., Synthesis of graphene from natural and industrial carbonaceous wastes (2014) RSC Adv, 4 (39), pp. 20441-20448 Somanathan, T., Prasad, K., Ostrikov, K., Saravanan, A., Krishna, V., Graphene oxide synthesis from agro waste (2015) Nanomaterials, 5 (2), p. 826 Shams, S.S., Zhang, L.S., Hu, R., Zhang, R., Zhu, J., Synthesis of graphene from biomass: A green chemistry approach (2015) Mater Lett, 161, pp. 476-479 Sharma, S., Kalita, G., Hirano, R., Shinde, S.M., Papon, R., Ohtani, H., Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition (2014) Carbon, 72, pp. 66-73 Gao, L., Li, R., Sui, X., Li, R., Chen, C., Chen, Q., Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol (2014) Environ Sci Technol, 48 (17), pp. 10191-10197