dc.date2016
dc.date2016-06-03T20:14:54Z
dc.date2016-06-03T20:14:54Z
dc.date.accessioned2018-03-29T01:33:33Z
dc.date.available2018-03-29T01:33:33Z
dc.identifier
dc.identifierRenewable And Sustainable Energy Reviews. Elsevier Ltd, v. 58, p. 976 - 1006, 2016.
dc.identifier13640321
dc.identifier10.1016/j.rser.2015.12.120
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84954286172&partnerID=40&md5=3399683e85bcb77d0026e9dfd1669844
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238294
dc.identifier2-s2.0-84954286172
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304955
dc.descriptionCarbon nanomaterials have huge potential in the field of energy and environmental applications. However, a wide range of greener and environment friendly synthesis methods utilizing natural, renewable, cheaper waste materials has to be developed. This will lead to the reduction of green house gases, exploitation of toxic materials and helps in the development of sustainable technologies. In this review, the details progress made in the last ten years concerning the synthesis of new one dimensional (carbon nanotubes CNT, carbon nanofiber) and two dimensional (graphene) carbon based materials using natural precursors and waste materials is summarized. The aim of this review paper is to provide a comprehensive scientific progress of synthesis of graphene and carbon nanotubes using natural precursor and waste materials for the future perspective. This paper also concludes with a brief discussion on the impact of natural precursor for the graphene and CNTs for environment, its toxicological effects and its future prospects in this rapidly emerging field. Natural precursors and waste carbon containing products are emerging as a new class of materials that have efficiency to produce graphene and CNTs. The various synthesis processes of graphene, CNTs and carbon dots has been reported using several natural hydrocarbon precursors (turpentine oil, eucalyptus oil, palm oil, neem oil, sunflower oil, castor oil, biodiesel, tea-tree extract, honey, milk, sugar, butter, egg etc.). Also, some research groups have used foods wastes (cookie and chocolate), vegetation wastes (woods, leaf, grass, fruit wastes), animal/bird/insect wastes (bone and cow dung, dog feces, chicken feather) and agro waste (sugarcane bagasse) for the synthesis of graphene and CNTs. Research on natural hydrocarbon precursors and wastage materials has increased in recent years as they promise to produce better and high quality of graphene and CNTs in large quantities. The fascinating aspect of this research area is that it guides the use of natural hydrocarbons to explore the possibilities of improving graphene stability and robustness suitable for different type of applications. © 2015 Elsevier Ltd. All rights reserved.
dc.description58
dc.description
dc.description976
dc.description1006
dc.descriptionCONICYT, Comisión Nacional de Investigación Científica y Tecnológica
dc.descriptionKroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., C60: Buckminsterfullerene (1985) Nature, 318 (6042), pp. 162-163
dc.descriptionIijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354 (6348), pp. 56-58
dc.descriptionNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669
dc.descriptionAllen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: A review of graphene (2010) Chem Rev, 110 (1), pp. 132-145
dc.descriptionMao, H.Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A.A., Graphene: Promises, facts, opportunities, and challenges in nanomedicine (2013) Chem Rev, 113 (5), pp. 3407-3424
dc.descriptionDupuis, A.-C., The catalyst in the CCVD of carbon nanotubes - A review (2005) Prog Mater Sci, 50 (8), pp. 929-961
dc.descriptionScardamaglia, M., Struzzi, C., Aparicio Rebollo, F.J., De Marco, P., Mudimela, P.R., Colomer, J.-F., Tuning electronic properties of carbon nanotubes by nitrogen grafting: Chemistry and chemical stability (2015) Carbon, 83, pp. 118-127
dc.descriptionGeng, X., Li, L., Li, F., Carbon nanotubes/activated carbon hybrid with ultrahigh surface area for electrochemical capacitors (2015) Electrochim Acta, 168, pp. 25-31
dc.descriptionKumar, A., Maschmann, M.R., Hodson, S.L., Baur, J., Fisher, T.S., Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability (2015) Carbon, 84, pp. 236-245
dc.descriptionMotta, M., Li, I.K., Windle, A., Mechanical properties of continuously spun fibers of carbon nanotubes (2005) Nano Lett, 5 (8), pp. 1529-1533
dc.descriptionByrne, M.T., Gun'Ko, Y.K., Recent advances in research on carbon nanotube-polymer composites (2010) Adv Mater, 22 (15), pp. 1672-1688
dc.descriptionNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Two-dimensional gas of massless Dirac fermions in graphene (2005) Nature, 438 (7065), pp. 197-200
dc.descriptionLee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene (2008) Science, 321 (5887), pp. 385-388
dc.descriptionBalandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Superior thermal conductivity of single-layer graphene (2008) Nano Lett, 8 (3), pp. 902-907
dc.descriptionVashist, S.K., Luong, J.H.T., Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites (2015) Carbon, 84, pp. 519-550
dc.descriptionWu, X., Yang, D., Wang, C., Jiang, Y., Wei, T., Fan, Z., Functionalized three-dimensional graphene networks for high performance supercapacitors (2015) Carbon, 92, pp. 26-30
dc.descriptionXue, Y., Liu, Y., Lu, F., Qu, J., Chen, H., Dai, L., Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications (2012) J Phys Chem Lett, 3 (12), pp. 1607-1612
dc.descriptionLow, T., Avouris, P., Graphene plasmonics for terahertz to mid-infrared applications (2014) ACS Nano, 8 (2), pp. 1086-1101
dc.descriptionEssig, S., Marquardt, C.W., Vijayaraghavan, A., Ganzhorn, M., Dehm, S., Hennrich, F., Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene (2010) Nano Lett, 10 (5), pp. 1589-1594
dc.descriptionDe, M., Chou, S.S., Dravid, V.P., Graphene oxide as an enzyme inhibitor: Modulation of activity of α-chymotrypsin (2011) J Am Chem Soc, 133 (44), pp. 17524-17527
dc.descriptionGuo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M., Layered graphene/quantum dots for photovoltaic devices (2010) Angew Chem Int Ed, 49 (17), pp. 3014-3017
dc.descriptionLiu, J., Cui, L., Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications (2013) Acta Biomater, 9 (12), pp. 9243-9257
dc.descriptionPumera, M., Graphene in biosensing (2011) Mater Today, 14 (7-8), pp. 308-315
dc.descriptionYang, Y., Asiri, A.M., Tang, Z., Du, D., Lin, Y., Graphene based materials for biomedical applications (2013) Mater Today, 16 (10), pp. 365-373
dc.descriptionLi, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Large-scale synthesis of aligned carbon nanotubes (1996) Science, 274 (5293), pp. 1701-1703
dc.descriptionBronikowski, M.J., CVD growth of carbon nanotube bundle arrays (2006) Carbon, 44 (13), pp. 2822-2832
dc.descriptionMayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Rühle, M., Kroto, H.W., Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols (2001) Chem Phys Lett, 338 (2-3), pp. 101-107
dc.descriptionZhang, Z.J., Wei, B.Q., Ramanath, G., Ajayan, P.M., Substrate-site selective growth of aligned carbon nanotubes (2000) Appl Phys Lett, 77 (23), pp. 3764-3766
dc.descriptionSen, R., Govindaraj, A., Rao, C.N.R., Carbon nanotubes by the metallocene route (1997) Chem Phys Lett, 267 (3-4), pp. 276-280
dc.descriptionSharma, S., Kalita, G., Hirano, R., Hayashi, Y., Tanemura, M., Influence of gas composition on the formation of graphene domain synthesized from camphor (2013) Mater Lett, 93, pp. 258-262
dc.descriptionAfre, R.A., Soga, T., Jimbo, T., Kumar, M., Ando, Y., Sharon, M., Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies (2006) Microporous Mesoporous Mater, 96 (1-3), pp. 184-190
dc.descriptionGhosh, P., Afre, R.A., Soga, T., Jimbo, T., A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil (2007) Mater Lett, 61 (17), pp. 3768-3770
dc.descriptionKumar, R., Tiwari, R., Srivastava, O., Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: Neem oil (2011) Nanoscale Res Lett, 6 (1), p. 92
dc.descriptionSuriani, A.B., Azira, A.A., Nik, S.F., Md Nor, R., Rusop, M., Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor (2009) Mater Lett, 63 (30), pp. 2704-2706
dc.descriptionJacob, M.V., Rawat, R.S., Ouyang, B., Bazaka, K., Kumar, D.S., Taguchi, D., Catalyst-free plasma enhanced growth of graphene from sustainable sources (2015) Nano Lett, 15 (9), pp. 5702-5708
dc.descriptionSeo, D.H., Rider, A.E., Han, Z.J., Kumar, S., Ostrikov, K., Plasma break-down and re-build: Same functional vertical graphenes from diverse natural precursors (2013) Adv Mater, 25 (39), pp. 5638-5642
dc.descriptionWang, J., Wang, C.-F., Chen, S., Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns (2012) Angew Chem Int Ed, 51 (37), pp. 9297-9301
dc.descriptionKumar, R., Singh, R.K., Kumar, P., Dubey, P.K., Tiwari, R.S., Srivastava, O.N., Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotubes bundles using green botanical hydrocarbon precursor: Sesame oil (2014) Sci Adv Mater, 6 (1), pp. 76-83
dc.descriptionMaheshwar, S., Madhuri, S., Natural precursors for synthesis of carbon nanomaterial (2010) Carbon Nano Forms and Applications: McGraw Hill Professional, , Access Engineering
dc.descriptionWei, L., Yushin, G., Nanostructured activated carbons from natural precursors for electrical double layer capacitors (2012) Nano Energy, 1 (4), pp. 552-565
dc.descriptionKumar, M., Ando, Y., Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production (2010) J Nanosci Nanotechnol, 10 (6), pp. 3739-3758
dc.descriptionSharon, M., Sharon, M., Carbon nanomaterials and their synthesis from plant-derived precursors (2006) Synth React Inorg Metal-Org Nano-Met Chem, 36 (3), pp. 265-279
dc.descriptionTerrones, M., Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes (2003) Annu Rev Mater Res, 33 (1), pp. 419-501
dc.descriptionAjayan, P.M., Stephan, O., Colliex, C., Trauth, D., Aligned carbon nanotube arrays formed by cutting a polymer resin - Nanotube composite (1994) Science, 265 (5176), pp. 1212-1214
dc.descriptionAndrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Continuous production of aligned carbon nanotubes: A step closer to commercial realization (1999) Chem Phys Lett, 303 (5-6), pp. 467-474
dc.descriptionFan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H., Self-oriented regular arrays of carbon nanotubes and their field emission properties (1999) Science, 283 (5401), pp. 512-514
dc.descriptionLin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E.L.G., Laser-induced porous graphene films from commercial polymers (2014) Nat Commun, p. 5
dc.descriptionPeng, Z., Lin, J., Ye, R., Samuel, E.L.G., Tour, J.M., Flexible and stackable laser-induced graphene supercapacitors (2015) ACS Appl Mater Interfaces, 7 (5), pp. 3414-3419
dc.descriptionPeng, Z., Ye, R., Mann, J.A., Zakhidov, D., Li, Y., Smalley, P.R., Flexible boron-doped laser-induced graphene microsupercapacitors (2015) ACS Nano, 9 (6), pp. 5868-5875
dc.descriptionYe, R., Peng, Z., Wang, T., Xu, Y., Zhang, J., Li, Y., In situ formation of metal oxide nanocrystals embedded in laser-induced graphene (2015) ACS Nano, 9 (9), pp. 9244-9251
dc.descriptionSun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J.M., Growth of graphene from solid carbon sources (2010) Nature, 468 (7323), pp. 549-552
dc.descriptionWei, D., Xu, X., Laser direct growth of graphene on silicon substrate (2012) Appl Phys Lett, 100 (2), p. 023110
dc.descriptionWang, Z., Zhao, Z., Qiu, J., Synthesis of branched carbon nanotubes from coal (2006) Carbon, 44 (7), pp. 1321-1324
dc.descriptionZhao, T., Liu, Y., Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures (2004) Carbon, 42 (12-13), pp. 2765-2768
dc.descriptionAjayan, P.M., Nanotubes from carbon (1999) Chem Rev, 99 (7), pp. 1787-1800
dc.descriptionĆirić-Marjanović, G., Pašti, I., Mentus, S., One-dimensional nitrogen-containing carbon nanostructures (2015) Prog Mater Sci, 69, pp. 61-182
dc.descriptionSaifuddin, N., Raziah, A.Z., Junizah, A.R., Carbon nanotubes: A review on structure and their interaction with proteins (2013) J Chem, (2013), p. 18
dc.descriptionPrasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., Methods for carbon nanotubes synthesis-review (2011) J Mater Chem, 21 (40), pp. 15872-15884
dc.descriptionDe Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J., Carbon nanotubes: Present and future commercial applications (2013) Science, 339 (6119), pp. 535-539
dc.descriptionAmelinckx, S., Bernaerts, D., Zhang, X.B., Van Tendeloo, G., Van Landuyt, J., A structure model and growth mechanism for multishell carbon nanotubes (1995) Science, 267 (5202), pp. 1334-1338
dc.descriptionTitirici, M.-M., White, R.J., Brun, N., Budarin, V.L., Su, D.S., Del Monte, F., Sustainable carbon materials (2015) Chem Soc Rev, 44 (1), pp. 250-290
dc.descriptionSu, D.S., The use of natural materials in nanocarbon synthesis (2009) ChemSusChem, 2 (11), pp. 1009-1020
dc.descriptionDeng, J., You, Y., Sahajwalla, V., Joshi, R.K., Transforming waste into carbon-based nanomaterials (2016) Carbon, 96, pp. 105-115
dc.descriptionKalita, G., Masahiro, M., Uchida, H., Wakita, K., Umeno, M., Few layers of graphene as transparent electrode from botanical derivative camphor (2010) Mater Lett, 64 (20), pp. 2180-2183
dc.descriptionKalita, G., Wakita, K., Takahashi, M., Umeno, M., Iodine doping in solid precursor-based CVD growth graphene film (2011) J Mater Chem, 21 (39), pp. 15209-15213
dc.descriptionKalita, G., Wakita, K., Umeno, M., Monolayer graphene from a green solid precursor (2011) Phys E Low-dimens Syst Nanostruct, 43 (8), pp. 1490-1493
dc.descriptionRavani, F., Papagelis, K., Dracopoulos, V., Parthenios, J., Dassios, K.G., Siokou, A., Graphene production by dissociation of camphor molecules on nickel substrate (2013) Thin Solid Films, 527, pp. 31-37
dc.descriptionLiu, W.-W., Aziz, A., Chai, S.-P., Mohamed, A.R., Tye, C.-T., The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition (2011) Phys E Low-dimens Syst Nanostruct, 43 (8), pp. 1535-1542
dc.descriptionKumar, M., Ando, Y., Single-wall and multi-wall carbon nanotubes from camphor - A botanical hydrocarbon (2003) Diam Relat Mater, 12 (10-11), pp. 1845-1850
dc.descriptionKumar, M., Ando, Y., Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support (2005) Carbon, 43 (3), pp. 533-540
dc.descriptionAntunes, E.F., De Resende, V.G., Mengui, U.A., Cunha, J.B.M., Corat, E.J., Massi, M., Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing (2011) Appl Surf Sci, 257 (18), pp. 8038-8043
dc.descriptionKumar, M., Ando, Y., A simple method of producing aligned carbon nanotubes from an unconventional precursor - Camphor (2003) Chem Phys Lett, 374 (5-6), pp. 521-526
dc.descriptionKumar, M., Kakamu, K., Okazaki, T., Ando, Y., Field emission from camphor-pyrolyzed carbon nanotubes (2004) Chem Phys Lett, 385 (3-4), pp. 161-165
dc.descriptionAndrews, R.J., Smith, C.F., Alexander, A.J., Mechanism of carbon nanotube growth from camphor and camphor analogs by chemical vapor deposition (2006) Carbon, 44 (2), pp. 341-347
dc.descriptionSharon, M., Hsu, W.K., Kroto, H.W., Walton, D.R.M., Kawahara, A., Ishihara, T., Camphor-based carbon nanotubes as an anode in lithium secondary batteries (2002) J Power Sources, 104 (1), pp. 148-153
dc.descriptionAntunes, E.F., Almeida, E.C., Rosa, C.B.F., De Medeiros, L.I., Pardini, L.C., Massi, M., Thermal annealing and electrochemical purification of multi-walled carbon nanotubes produced by camphor/ferrocene mixtures (2010) J Nanosci Nanotechnol, 10 (2), pp. 1296-1303
dc.descriptionTang, J., Jin, G.-Q., Wang, Y.-Y., Guo, X.-Y., Tree-like carbon grown from camphor (2010) Carbon, 48 (5), pp. 1545-1551
dc.descriptionMusso, S., Fanchini, G., Tagliaferro, A., Growth of vertically aligned carbon nanotubes by CVD by evaporation of carbon precursors (2005) Diam Relat Mater, 14 (3-7), pp. 784-789
dc.descriptionPorro, S., Musso, S., Giorcelli, M., Tagliaferro, A., Dalal, S.H., Teo, K.B.K., Study of CNTs and nanographite grown by thermal CVD using different precursors (2006) J Non-Cryst Solids, 352 (9-20), pp. 1310-1313
dc.descriptionMusso, S., Porro, S., Giorcelli, M., Chiodoni, A., Ricciardi, C., Tagliaferro, A., Macroscopic growth of carbon nanotube mats and their mechanical properties (2007) Carbon, 45 (5), pp. 1133-1136
dc.descriptionMusso, S., Porro, S., Rovere, M., Giorcelli, M., Tagliaferro, A., Fluid dynamic analysis of gas flow in a thermal-CVD system designed for growth of carbon nanotubes (2008) J Cryst Growth, 310 (2), pp. 477-483
dc.descriptionPavese, M., Musso, S., Bianco, S., Giorcelli, M., Pugno, N., An analysis of carbon nanotube structure wettability before and after oxidation treatment (2008) J Phys Condens Matter, 20 (47), p. 474206
dc.descriptionKumar, M., Ando, Y., Camphor-a botanical precursor producing garden of carbon nanotubes (2003) Diam Relat Mater, 12 (3-7), pp. 998-1002
dc.descriptionSomani, S.P., Somani, P.R., Tanemura, M., Lau, S.P., Umeno, M., Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission (2009) Curr Appl Phys, 9 (1), pp. 144-150
dc.descriptionPorro, S., Musso, S., Giorcelli, M., Chiodoni, A., Tagliaferro, A., Optimization of a thermal-CVD system for carbon nanotube growth (2007) Phys E Low-dimens Syst Nanostruct, 37 (1-2), pp. 16-20
dc.descriptionJana, D., Sun, C.-L., Chen, L.-C., Chen, K.-H., Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes (2013) Prog Mater Sci, 58 (5), pp. 565-635
dc.descriptionMaiti, U.N., Lee, W.J., Lee, J.M., Oh, Y., Kim, J.Y., Kim, J.E., 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices (2014) Adv Mater, 26 (1), pp. 40-67
dc.descriptionGhosh, K., Kumar, M., Maruyama, T., Ando, Y., Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources (2009) Carbon, 47 (6), pp. 1565-1575
dc.descriptionChatterjee, A.K., Sharon, M., Banerjee, R., Neumann-Spallart, M., CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors (2003) Electrochim Acta, 48 (23), pp. 3439-3446
dc.descriptionAfre, R.A., Soga, T., Jimbo, T., Kumar, M., Ando, Y., Sharon, M., Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil (2005) Chem Phys Lett, 414 (1-3), pp. 6-10
dc.descriptionGhosh, P., Soga, T., Afre, R.A., Jimbo, T., Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpentine oil (2008) J Alloy Compd, 462 (1-2), pp. 289-293
dc.descriptionGhosh, P., Soga, T., Ghosh, K., Afre, R.A., Jimbo, T., Ando, Y., Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene (2008) J Non-Cryst Solids, 354 (34), pp. 4101-4106
dc.descriptionAwasthi, K., Kumar, R., Tiwari, R.S., Srivastava, O.N., Large scale synthesis of bundles of aligned carbon nanotubes using a natural precursor: Turpentine oil (2010) J Exp Nanosci, 5 (6), pp. 498-508
dc.descriptionKumar, R., Yadav, R.M., Awasthi, K., Tiwari, R.S., Srivastava, O.N., Effect of nitrogen variation on the synthesis of vertically aligned bamboo-shaped C-N nanotubes using sunflower oil (2011) Int J Nanosci, 10 (4-5), pp. 809-813
dc.descriptionKumar, R., Yadav, R.M., Awasthi, K., Shripathi, T., Sinha, A.S.K., Tiwari, R.S., Synthesis of carbon and carbon-nitrogen nanotubes using green precursor: Jatropha-derived biodiesel (2012) J Exp Nanosci, 8 (4), pp. 606-620
dc.descriptionAwasthi, K., Kumar, R., Raghubanshi, H., Awasthi, S., Pandey, R., Singh, D., Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials (2011) Bull Mater Sci, 34 (4), pp. 607-614
dc.descriptionTermehyousefi, A., Bagheri, S., Shinji, K., Rouhi, J., Rusop Mahmood, M., Ikeda, S., Fast synthesis of multilayer carbon nanotubes from camphor oil as an camphor oil as an energy storage material (2014) BioMed Res Int, (2014), p. 6
dc.descriptionSeo, D.H., Han, Z.J., Kumar, S., Ostrikov, K., Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance (2013) Adv Energy Mater, 3 (10), pp. 1316-1323
dc.descriptionSeo, D.H., Yick, S., Han, Z.J., Fang, J.H., Ostrikov, K., Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes (2014) ChemSusChem, 7 (8), pp. 2317-2324
dc.descriptionSeo, D.H., Yick, S., Pineda, S., Su, D., Wang, G., Han, Z.J., Single-step, plasma-enabled reforming of natural precursors into vertical graphene electrodes with high areal capacitance (2015) ACS Sustai Chem Eng, 3 (3), pp. 544-551
dc.descriptionRuan, G., Sun, Z., Peng, Z., Tour, J.M., Growth of graphene from food, insects, and waste (2011) ACS Nano, 5 (9), pp. 7601-7607
dc.descriptionAkhavan, O., Bijanzad, K., Mirsepah, A., Synthesis of graphene from natural and industrial carbonaceous wastes (2014) RSC Adv, 4 (39), pp. 20441-20448
dc.descriptionSomanathan, T., Prasad, K., Ostrikov, K., Saravanan, A., Krishna, V., Graphene oxide synthesis from agro waste (2015) Nanomaterials, 5 (2), p. 826
dc.descriptionShams, S.S., Zhang, L.S., Hu, R., Zhang, R., Zhu, J., Synthesis of graphene from biomass: A green chemistry approach (2015) Mater Lett, 161, pp. 476-479
dc.descriptionSharma, S., Kalita, G., Hirano, R., Shinde, S.M., Papon, R., Ohtani, H., Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition (2014) Carbon, 72, pp. 66-73
dc.descriptionGao, L., Li, R., Sui, X., Li, R., Chen, C., Chen, Q., Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol (2014) Environ Sci Technol, 48 (17), pp. 10191-10197
dc.description
dc.description
dc.languageen
dc.publisherElsevier Ltd
dc.relationRenewable and Sustainable Energy Reviews
dc.rightsfechado
dc.sourceScopus
dc.titleNatural And Waste Hydrocarbon Precursors For The Synthesis Of Carbon Based Nanomaterials: Graphene And Cnts
dc.typeArtículos de revistas
dc.typeReview


Este ítem pertenece a la siguiente institución