Artículos de revistas
Integrative Analysis To Select Cancer Candidate Biomarkers To Targeted Validation
Registro en:
Oncotarget. Impact Journals Llc, v. 6, n. 41, p. 43635 - 43652, 2015.
19492553
10.18632/oncotarget.6018
2-s2.0-84952905857
Institución
Resumen
Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. 6 41 43635 43652 Kulasingam, V., Diamandis, E.P., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies (2008) Nature clinical practice Oncology, 5, pp. 588-599 Wu, C.C., Hsu, C.W., Chen, C.D., Yu, C.J., Chang, K.P., Tai, D.I., Liu, H.P., Yu, J.S., Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas (2010) Molecular & cellular proteomics: MCP, 9, pp. 1100-1117 Chen, R., Pan, S., Brentnall, T.A., Aebersold, R., Proteomic profiling of pancreatic cancer for biomarker discovery (2005) Molecular & cellular proteomics: MCP, 4, pp. 523-533 Shimwell, N.J., Bryan, R.T., Wei, W., James, N.D., Cheng, K.K., Zeegers, M.P., Johnson, P.J., Ward, D.G., Combined proteome and transcriptome analyses for the discovery of urinary biomarkers for urothelial carcinoma (2013) British journal of cancer, 108, pp. 1854-1861 White, N.M., Masui, O., Desouza, L.V., Krakovska, O., Metias, S., Romaschin, A.D., Honey, R.J., Siu, K.W., Quantitative proteomic analysis reveals potential diagnostic markers and pathways involved in pathogenesis of renal cell carcinoma (2014) Oncotarget, 5, pp. 506-518 Rifai, N., Gillette, M.A., Carr, S.A., Protein biomarker discovery and validation: the long and uncertain path to clinical utility (2006) Nature biotechnology, 24, pp. 971-983 Whiteaker, J.R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Gafken, P.R., A targeted proteomics-based pipeline for verification of biomarkers in plasma (2011) Nature biotechnology, 29, pp. 625-634 Makawita, S., Diamandis, E.P., The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification (2010) Clinical chemistry, 56, pp. 212-222 Picotti, P., Rinner, O., Stallmach, R., Dautel, F., Farrah, T., Domon, B., Wenschuh, H., Aebersold, R., High-throughput generation of selected reaction-monitoring assays for proteins and proteomes (2010) Nature methods, 7, pp. 43-46 Picotti, P., Bodenmiller, B., Aebersold, R., Proteomics meets the scientific method (2013) Nature methods, 10, pp. 24-27 Gillette, M.A., Carr, S.A., Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry (2013) Nature methods, 10, pp. 28-34 Chang, K.P., Yu, J.S., Chien, K.Y., Lee, C.W., Liang, Y., Liao, C.T., Yen, T.C., Chi, L.M., Identification of PRDX4 and P4HA2 as metastasis-associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology (2011) Journal of proteome research, 10, pp. 4935-4947 de Jong, E.P., Xie, H., Onsongo, G., Stone, M.D., Chen, X.B., Kooren, J.A., Refsland, E.W., Carlis, J.V., Quantitative proteomics reveals myosin and actin as promising saliva biomarkers for distinguishing pre-malignant and malignant oral lesions (2010) PloS one, 5 Hu, S., Arellano, M., Boontheung, P., Wang, J., Zhou, H., Jiang, J., Elashoff, D., Wong, D.T., Salivary proteomics for oral cancer biomarker discovery (2008) Clinical cancer research: an official journal of the American Association for Cancer Research, 14, pp. 6246-6252 Sepiashvili, L., Hui, A., Ignatchenko, V., Shi, W., Su, S., Xu, W., Huang, S.H., Kislinger, T., Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy (2012) Molecular & cellular proteomics: MCP, 11, pp. 1404-1415 van der Post, S., Hansson, G.C., Membrane Protein Profiling of Human Colon Reveals Distinct Regional Differences (2014) Molecular & cellular proteomics: MCP Simabuco, F.M., Kawahara, R., Yokoo, S., Granato, D.C., Miguel, L., Agostini, M., Aragao, A.Z., Paes Leme, A.F., ADAM17 mediates OSCC development in an orthotopic murine model (2014) Molecular cancer, 13, p. 24 Liu, N.Q., Braakman, R.B., Stingl, C., Luider, T.M., Martens, J.W., Foekens, J.A., Umar, A., Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue (2012) Journal of mammary gland biology and neoplasia, 17, pp. 155-164 Granato, D.C., Zanetti, M.R., Kawahara, R., Yokoo, S., Domingues, R.R., Aragao, A.Z., Agostini, M., Silva, A.R., Integrated proteomics identified up-regulated focal adhesion-mediated proteins in human squamous cell carcinoma in an orthotopic murine model (2014) PloS one, 9 Kulasingam, V., Diamandis, E.P., Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets (2007) Molecular & cellular proteomics: MCP, 6, pp. 1997-2011 Pham, T.V., Piersma, S.R., Warmoes, M., Jimenez, C.R., On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics (2010) Bioinformatics, 26, pp. 363-369 Christin, C., Hoefsloot, H.C., Smilde, A.K., Hoekman, B., Suits, F., Bischoff, R., Horvatovich, P., A critical assessment of feature selection methods for biomarker discovery in clinical proteomics (2013) Molecular & cellular proteomics: MCP, 12, pp. 263-276 Kim, Y., Ignatchenko, V., Yao, C.Q., Kalatskaya, I., Nyalwidhe, J.O., Lance, R.S., Gramolini, A.O., Drake, R.R., Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organconfined versus extracapsular prostate cancer (2012) Molecular & cellular proteomics: MCP, 11, pp. 1870-1884 Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Mills, S.A., Parsa, A.T., Cancer and the complement cascade (2010) Molecular cancer research: MCR, 8, pp. 1453-1465 Cho, M.S., Vasquez, H.G., Rupaimoole, R., Pradeep, S., Wu, S., Zand, B., Han, H.D., Dalton, H.J., Autocrine effects of tumor-derived complement (2014) Cell reports, 6, pp. 1085-1095 Bensimon, A., Heck, A.J., Aebersold, R., Mass spectrometrybased proteomics and network biology (2012) Annual review of biochemistry, 81, pp. 379-405 Bonne, N.J., Wong, D.T., Salivary biomarker development using genomic, proteomic and metabolomic approaches (2012) Genome medicine, 4, p. 82 Leemans, C.R., Braakhuis, B.J., Brakenhoff, R.H., The molecular biology of head and neck cancer (2011) Nature reviews Cancer, 11, pp. 9-22 Argiris, A., Karamouzis, M.V., Raben, D., Ferris, R.L., Head and neck cancer (2008) Lancet, 371, pp. 1695-1709 da Silva, S.D., Ferlito, A., Takes, R.P., Brakenhoff, R.H., Valentin, M.D., Woolgar, J.A., Bradford, C.R., Kowalski, L.P., Advances and applications of oral cancer basic research (2011) Oral oncology, 47, pp. 783-791 Macor, P., Tedesco, F., Complement as effector system in cancer immunotherapy (2007) Immunology letters, 111, pp. 6-13 Bjorge, L., Hakulinen, J., Vintermyr, O.K., Jarva, H., Jensen, T.S., Iversen, O.E., Meri, S., Ascitic complement system in ovarian cancer (2005) British journal of cancer, 92, pp. 895-905 Kim, D.Y., Martin, C.B., Lee, S.N., Martin, B.K., Expression of complement protein C5a in a murine mammary cancer model: tumor regression by interference with the cell cycle (2005) Cancer immunology, immunotherapy: CII, 54, pp. 1026-1037 Gollapalli, K., Ray, S., Srivastava, R., Renu, D., Singh, P., Dhali, S., Bajpai Dikshit, J., Srivastava, S., Investigation of serum proteome alterations in human glioblastoma multiforme (2012) Proteomics, 12, pp. 2378-2390 Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Ahn, B.J., Fang, S., Parsa, A.T., The complement cascade as a mediator of tissue growth and regeneration (2010) Inflammation research: official journal of the European Histamine Research Society, 59, pp. 897-905. , [et al] Markiewski, M.M., DeAngelis, R.A., Benencia, F., Ricklin-Lichtsteiner, S.K., Koutoulaki, A., Gerard, C., Coukos, G., Lambris, J.D., Modulation of the antitumor immune response by complement (2008) Nature immunology, 9, pp. 1225-1235 Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674 Paiva, J.G., Florian-Cruz, L., Pedrini, H., Telles, G.P., Minghim, R., Improved similarity trees and their application to visual data classification (2011) IEEE transactions on visualization and computer graphics, 17, pp. 2459-2468 Rousseeuw, P.J., Silhouettes: A graphical aid to the interpretation and validation of cluster analysis (1987) Journal of Computational and Applied Mathematics, 20, pp. 53-65 Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G., Diagnosis of multiple cancer types by shrunken centroids of gene expression (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 6567-6572 Guyon, I.W., Barnhill, J., Vapnik, S., Gene Selection for Cancer Classification using Support Vector Machines (2002) Machine learning, 46, pp. 389-422 Kuhn, M., Building Predictive Models in R Using the caret Package (2008) Journal of Statistical Software, 26, pp. 1-26 Smit, S., Hoefsloot, H.C., Smilde, A.K., Statistical data processing in clinical proteomics (2008) Journal of chromatography B, Analytical technologies in the biomedical and life sciences, 866, pp. 77-88 Carazzolle, M.F., de Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS-Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-genedrug interactions by integrating a variety of data sources and tools (2014) PloS one, 9 Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Yamanishi, Y., KEGG for linking genomes to life and the environment (2008) Nucleic acids research, 36, pp. D480-D484 Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T., Cytoscape 2, new features for data integration and network visualization (2011) Bioinformatics, 27, pp. 431-432 Ponten, F., Schwenk, J.M., Asplund, A., Edqvist, P.H., The Human Protein Atlas as a proteomic resource for biomarker discovery (2011) Journal of internal medicine, 270, pp. 428-446