dc.date | 2015 | |
dc.date | 2016-06-03T20:13:56Z | |
dc.date | 2016-06-03T20:13:56Z | |
dc.date.accessioned | 2018-03-29T01:32:57Z | |
dc.date.available | 2018-03-29T01:32:57Z | |
dc.identifier | | |
dc.identifier | Oncotarget. Impact Journals Llc, v. 6, n. 41, p. 43635 - 43652, 2015. | |
dc.identifier | 19492553 | |
dc.identifier | 10.18632/oncotarget.6018 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84952905857&partnerID=40&md5=afe1809029b1e7b58be6c3ddb6244d79 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/238142 | |
dc.identifier | 2-s2.0-84952905857 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304803 | |
dc.description | Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. | |
dc.description | 6 | |
dc.description | 41 | |
dc.description | 43635 | |
dc.description | 43652 | |
dc.description | Kulasingam, V., Diamandis, E.P., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies (2008) Nature clinical practice Oncology, 5, pp. 588-599 | |
dc.description | Wu, C.C., Hsu, C.W., Chen, C.D., Yu, C.J., Chang, K.P., Tai, D.I., Liu, H.P., Yu, J.S., Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas (2010) Molecular & cellular proteomics: MCP, 9, pp. 1100-1117 | |
dc.description | Chen, R., Pan, S., Brentnall, T.A., Aebersold, R., Proteomic profiling of pancreatic cancer for biomarker discovery (2005) Molecular & cellular proteomics: MCP, 4, pp. 523-533 | |
dc.description | Shimwell, N.J., Bryan, R.T., Wei, W., James, N.D., Cheng, K.K., Zeegers, M.P., Johnson, P.J., Ward, D.G., Combined proteome and transcriptome analyses for the discovery of urinary biomarkers for urothelial carcinoma (2013) British journal of cancer, 108, pp. 1854-1861 | |
dc.description | White, N.M., Masui, O., Desouza, L.V., Krakovska, O., Metias, S., Romaschin, A.D., Honey, R.J., Siu, K.W., Quantitative proteomic analysis reveals potential diagnostic markers and pathways involved in pathogenesis of renal cell carcinoma (2014) Oncotarget, 5, pp. 506-518 | |
dc.description | Rifai, N., Gillette, M.A., Carr, S.A., Protein biomarker discovery and validation: the long and uncertain path to clinical utility (2006) Nature biotechnology, 24, pp. 971-983 | |
dc.description | Whiteaker, J.R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Gafken, P.R., A targeted proteomics-based pipeline for verification of biomarkers in plasma (2011) Nature biotechnology, 29, pp. 625-634 | |
dc.description | Makawita, S., Diamandis, E.P., The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification (2010) Clinical chemistry, 56, pp. 212-222 | |
dc.description | Picotti, P., Rinner, O., Stallmach, R., Dautel, F., Farrah, T., Domon, B., Wenschuh, H., Aebersold, R., High-throughput generation of selected reaction-monitoring assays for proteins and proteomes (2010) Nature methods, 7, pp. 43-46 | |
dc.description | Picotti, P., Bodenmiller, B., Aebersold, R., Proteomics meets the scientific method (2013) Nature methods, 10, pp. 24-27 | |
dc.description | Gillette, M.A., Carr, S.A., Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry (2013) Nature methods, 10, pp. 28-34 | |
dc.description | Chang, K.P., Yu, J.S., Chien, K.Y., Lee, C.W., Liang, Y., Liao, C.T., Yen, T.C., Chi, L.M., Identification of PRDX4 and P4HA2 as metastasis-associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology (2011) Journal of proteome research, 10, pp. 4935-4947 | |
dc.description | de Jong, E.P., Xie, H., Onsongo, G., Stone, M.D., Chen, X.B., Kooren, J.A., Refsland, E.W., Carlis, J.V., Quantitative proteomics reveals myosin and actin as promising saliva biomarkers for distinguishing pre-malignant and malignant oral lesions (2010) PloS one, 5 | |
dc.description | Hu, S., Arellano, M., Boontheung, P., Wang, J., Zhou, H., Jiang, J., Elashoff, D., Wong, D.T., Salivary proteomics for oral cancer biomarker discovery (2008) Clinical cancer research: an official journal of the American Association for Cancer Research, 14, pp. 6246-6252 | |
dc.description | Sepiashvili, L., Hui, A., Ignatchenko, V., Shi, W., Su, S., Xu, W., Huang, S.H., Kislinger, T., Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy (2012) Molecular & cellular proteomics: MCP, 11, pp. 1404-1415 | |
dc.description | van der Post, S., Hansson, G.C., Membrane Protein Profiling of Human Colon Reveals Distinct Regional Differences (2014) Molecular & cellular proteomics: MCP | |
dc.description | Simabuco, F.M., Kawahara, R., Yokoo, S., Granato, D.C., Miguel, L., Agostini, M., Aragao, A.Z., Paes Leme, A.F., ADAM17 mediates OSCC development in an orthotopic murine model (2014) Molecular cancer, 13, p. 24 | |
dc.description | Liu, N.Q., Braakman, R.B., Stingl, C., Luider, T.M., Martens, J.W., Foekens, J.A., Umar, A., Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue (2012) Journal of mammary gland biology and neoplasia, 17, pp. 155-164 | |
dc.description | Granato, D.C., Zanetti, M.R., Kawahara, R., Yokoo, S., Domingues, R.R., Aragao, A.Z., Agostini, M., Silva, A.R., Integrated proteomics identified up-regulated focal adhesion-mediated proteins in human squamous cell carcinoma in an orthotopic murine model (2014) PloS one, 9 | |
dc.description | Kulasingam, V., Diamandis, E.P., Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets (2007) Molecular & cellular proteomics: MCP, 6, pp. 1997-2011 | |
dc.description | Pham, T.V., Piersma, S.R., Warmoes, M., Jimenez, C.R., On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics (2010) Bioinformatics, 26, pp. 363-369 | |
dc.description | Christin, C., Hoefsloot, H.C., Smilde, A.K., Hoekman, B., Suits, F., Bischoff, R., Horvatovich, P., A critical assessment of feature selection methods for biomarker discovery in clinical proteomics (2013) Molecular & cellular proteomics: MCP, 12, pp. 263-276 | |
dc.description | Kim, Y., Ignatchenko, V., Yao, C.Q., Kalatskaya, I., Nyalwidhe, J.O., Lance, R.S., Gramolini, A.O., Drake, R.R., Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organconfined versus extracapsular prostate cancer (2012) Molecular & cellular proteomics: MCP, 11, pp. 1870-1884 | |
dc.description | Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Mills, S.A., Parsa, A.T., Cancer and the complement cascade (2010) Molecular cancer research: MCR, 8, pp. 1453-1465 | |
dc.description | Cho, M.S., Vasquez, H.G., Rupaimoole, R., Pradeep, S., Wu, S., Zand, B., Han, H.D., Dalton, H.J., Autocrine effects of tumor-derived complement (2014) Cell reports, 6, pp. 1085-1095 | |
dc.description | Bensimon, A., Heck, A.J., Aebersold, R., Mass spectrometrybased proteomics and network biology (2012) Annual review of biochemistry, 81, pp. 379-405 | |
dc.description | Bonne, N.J., Wong, D.T., Salivary biomarker development using genomic, proteomic and metabolomic approaches (2012) Genome medicine, 4, p. 82 | |
dc.description | Leemans, C.R., Braakhuis, B.J., Brakenhoff, R.H., The molecular biology of head and neck cancer (2011) Nature reviews Cancer, 11, pp. 9-22 | |
dc.description | Argiris, A., Karamouzis, M.V., Raben, D., Ferris, R.L., Head and neck cancer (2008) Lancet, 371, pp. 1695-1709 | |
dc.description | da Silva, S.D., Ferlito, A., Takes, R.P., Brakenhoff, R.H., Valentin, M.D., Woolgar, J.A., Bradford, C.R., Kowalski, L.P., Advances and applications of oral cancer basic research (2011) Oral oncology, 47, pp. 783-791 | |
dc.description | Macor, P., Tedesco, F., Complement as effector system in cancer immunotherapy (2007) Immunology letters, 111, pp. 6-13 | |
dc.description | Bjorge, L., Hakulinen, J., Vintermyr, O.K., Jarva, H., Jensen, T.S., Iversen, O.E., Meri, S., Ascitic complement system in ovarian cancer (2005) British journal of cancer, 92, pp. 895-905 | |
dc.description | Kim, D.Y., Martin, C.B., Lee, S.N., Martin, B.K., Expression of complement protein C5a in a murine mammary cancer model: tumor regression by interference with the cell cycle (2005) Cancer immunology, immunotherapy: CII, 54, pp. 1026-1037 | |
dc.description | Gollapalli, K., Ray, S., Srivastava, R., Renu, D., Singh, P., Dhali, S., Bajpai Dikshit, J., Srivastava, S., Investigation of serum proteome alterations in human glioblastoma multiforme (2012) Proteomics, 12, pp. 2378-2390 | |
dc.description | Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Ahn, B.J., Fang, S., Parsa, A.T., The complement cascade as a mediator of tissue growth and regeneration (2010) Inflammation research: official journal of the European Histamine Research Society, 59, pp. 897-905. , [et al] | |
dc.description | Markiewski, M.M., DeAngelis, R.A., Benencia, F., Ricklin-Lichtsteiner, S.K., Koutoulaki, A., Gerard, C., Coukos, G., Lambris, J.D., Modulation of the antitumor immune response by complement (2008) Nature immunology, 9, pp. 1225-1235 | |
dc.description | Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674 | |
dc.description | Paiva, J.G., Florian-Cruz, L., Pedrini, H., Telles, G.P., Minghim, R., Improved similarity trees and their application to visual data classification (2011) IEEE transactions on visualization and computer graphics, 17, pp. 2459-2468 | |
dc.description | Rousseeuw, P.J., Silhouettes: A graphical aid to the interpretation and validation of cluster analysis (1987) Journal of Computational and Applied Mathematics, 20, pp. 53-65 | |
dc.description | Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G., Diagnosis of multiple cancer types by shrunken centroids of gene expression (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 6567-6572 | |
dc.description | Guyon, I.W., Barnhill, J., Vapnik, S., Gene Selection for Cancer Classification using Support Vector Machines (2002) Machine learning, 46, pp. 389-422 | |
dc.description | Kuhn, M., Building Predictive Models in R Using the caret Package (2008) Journal of Statistical Software, 26, pp. 1-26 | |
dc.description | Smit, S., Hoefsloot, H.C., Smilde, A.K., Statistical data processing in clinical proteomics (2008) Journal of chromatography B, Analytical technologies in the biomedical and life sciences, 866, pp. 77-88 | |
dc.description | Carazzolle, M.F., de Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS-Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-genedrug interactions by integrating a variety of data sources and tools (2014) PloS one, 9 | |
dc.description | Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Yamanishi, Y., KEGG for linking genomes to life and the environment (2008) Nucleic acids research, 36, pp. D480-D484 | |
dc.description | Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T., Cytoscape 2, new features for data integration and network visualization (2011) Bioinformatics, 27, pp. 431-432 | |
dc.description | Ponten, F., Schwenk, J.M., Asplund, A., Edqvist, P.H., The Human Protein Atlas as a proteomic resource for biomarker discovery (2011) Journal of internal medicine, 270, pp. 428-446 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Impact Journals LLC | |
dc.relation | Oncotarget | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Integrative Analysis To Select Cancer Candidate Biomarkers To Targeted Validation | |
dc.type | Artículos de revistas | |