Artículos de revistas
Mercury (ii) Removal By Resistant Bacterial Isolates And Mercuric (ii) Reductase Activity In A New Strain Of Pseudomonas Sp. B50a
Registro en:
New Biotechnology. Elsevier, v. 33, n. 1, p. 216 - 223, 2016.
18716784
10.1016/j.nbt.2015.05.006
2-s2.0-84947035685
Institución
Resumen
This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37°C and 45°C. The ions NH4 +, Ba2+, Sn2+, Ni2+ and Cd2+ neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca2+, Cu+ and K+. The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. © 2015 Elsevier B.V.. 33 1 216 223 (2002), http://www.chem.unep.ch/MERCURY/, Global Mercury Assessment, Tech. rep., UNEP, Geneva, SwitzerlandMaxson, P., Dynamics of mercury pollution on regional and global scales (2005) Atmospheric processes and human exposures around the world, pp. 25-50. , Springer, New York, N. Pirrone, K.R. Mahaffey (Eds.) Boening, D.W., Ecological effects, transport, and fate of mercury: a general review (2000) Chemosphere, 40, pp. 1335-1351 Nies, D.H., Microbial heavy-metal resistance (1999) Appl Microbiol Biotechnol, 51, pp. 730-750 Barkay, T., Miller, S.M., Summers, A., Bacterial mercury resistance from atoms to ecosystems (2003) FEMS Microbiol Rev, 27, pp. 355-384 Barkay, T., Wagner-Döbler, I., Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment (2005) Adv Appl Microbiol, 57, pp. 1-52 Summers, A.O., Untwist and shout. A heavy metal responsive transcriptional regulator (1992) J Bacteriol, 174, pp. 3097-3101 Narita, M., Chiba, K., Nishizawa, H., Jshij, H., Huang, C.C., Kawabata, Z., Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay (2003) FEMS Microbiol Lett, 223, pp. 73-82 Silver, S., Hobman, J.L., Mercury microbiology: resistance systems, environmental aspects, methylation, and human health (2007) Microbiol Monographs, 6, pp. 357-370 Engst, S., Miller, S.M., Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands (1999) Biochemistry, 38, pp. 3519-3529 Camargo, F.A.O., Bento, F.M., Jacques, R.J.S., Uso de microrganismos para remediação de metais (2007) Tópicos em Ciência do Solo, pp. 468-496. , Sociedade Brasileira de Ciência do Solo, Minas Gerais, C.A. Ceretta, L.S. Silva, J.M. Reichert (Eds.) Tedesco, M.J., Gianello, C., Bissani, C.A., Análises de solo, plantas e outros materiais (1995) Boletim Técnico, , Universidade Federal do Rio Grande do Sul, Porto Alegre Takeuchi, F., Negishi, A., Nakamura, S., Kanao, T., Kamimura, K., Sugio, T., Existence of an iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds (2005) J Biosci Bioeng, 99, pp. 586-591 Sambrook, J., Russell, D.W., (2003) Molecular cloning - a laboratory manual, , Cold Spring Harbor Laboratory Press, New York Wang, Y., Boyd, E., Crane, S., Lu-Irving, P., Krabbenhoft, D., King, S., Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A. (2011) Microbial Ecol, 62, pp. 739-752 Murtaza, I., Dutt, A., Ali, A., Relationship between the persistance of mer operon sequences in Escherichia coli and their resistance to mercury (2002) Curr Microbiol, 44, pp. 178-183 Ball, M.M., Mercury resistance in bacterial strains isolated from tailing ponds in a gold mining area near El Callao (Bolívar State, Venezuela) (2007) Curr Microbiol, 54, pp. 149-154 http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7471b.pdf, EPA 7471B (2009) Mercury in solid or semisolid waste: manual cold-vapor technique Ghosh, S., Sadhukhan, P.C., Ghosh, D.K., Chaudhuri, J., Mandal, A., Purification and properties of mercuric reductase from Azotobacter chroococcum (1999) J Appl Microbiol, 86, pp. 7-12 Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J Biol Chem, 193, pp. 265-275 Horn, J.M., Brunke, M., Deckwer, W.D., Timmis, K.N., Pseudomonas putida strains which constitutively overexpress mercury resistance for biodetoxification of organomercurial pollutants (1994) Appl Environ Microbiol, 60, pp. 357-362 Canstein, H., Li, Y., Timmis, K.N., Deckwer, W.D., Wagner-Döbler, I., Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain (1999) Appl Environ Microbiol, 65, pp. 5279-5284 Fortunato, R., Crespo, J.G., Reis, M.A.M., Biodegradation of thiomersal containing effluents by a mercury resistant Pseudomonas putida strain (2005) Water Res, 39, pp. 3511-3522 Mortazavi, S., Rezaee, A., Khavanin, A., Vamazyar, S., Jafarzadeh, M., Removal of mercuric chloride by a mercury resistant Pseudomonas putida strain (2005) J Biol Sci, 5, pp. 269-273 Giovanella, P., Bento, F., Cabral, L., Gianello, C., Camargo, F.A.O., Isolamento e seleção de micro-organismos resistentes e capazes de volatilizar mercúrio (2011) Quim Nova, 34, pp. 232-236 Nakamura, K., Fujisaki, T., Yoshisada, S., Mercury-resistant bacteria in sediment of Minamata Bay (1998) Nippon Suisan Gakkaishi, 54, pp. 1359-1363 Nakamura, K., Iwahara, M., Furukawa, K., Screening of organomercurial-volatilizing bacteria in the mercury-polluted sediments and seawater of Minamata Bay in Japan (2011) Clean Prod Processes, 3, pp. 104-107 Ray, S., Pahan, K., Gachhui, R., Chaudhuri, J., Mandal, A., Studies on the mercury volatilizing enzymes in nitrogen-fixing Beijerinckia mobilis (1993) World J Microbiol Biotechnol, 9, pp. 184-186 Sadhukhan, P.C., Ghosh, S., Chaudhuri, J., Ghosh, D.K., Mandal, A., Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta (1997) Environ Pollut, 97, pp. 71-78 Ghosh, S., Sadhukhan, P.C., Ghosh, D.K., Mandal, A.K., Chaudhuri, J., Mandal, A., Studies on the effect of mercury and organomercurial on the growth and nitrogen fixation by mercury-resistant Azotobacter strains (1996) J Appl Bacteriol, 80, pp. 319-326 Cabral, L., Giovanella, P., Gianello, C., Bento, F.M., Andreazza, R., Camargo, F.A.O., Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain (2013) Biodegradation, 24, pp. 319-331 Viloca, M.G., Gao, J., Karplus, M., Truhlar, D.G., How enzymes work: analysis by modern rate theory and computer simulations (2004) Science, 303, pp. 186-195 Kannan, S.K., Krishnamoorthy, R., Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury: a case study in Pulicat lake north of Chennai, South East India (2006) Sci Total Environ, 367, pp. 341-353 Vetriani, C., Chew, Y.S., Miller, S.M., Yagi, J., Coombs, J., Lutz, R.A., Mercury adaptation among bacteria from a deep-sea hydrothermal vent (2005) Appl Environ Microbiol, 71, pp. 220-226 Chatziefthimou, A., Crespo-Medina, M., Wang, Y., Vetriani, C., Barkay, T., The isolation and initial characterization of mercury resistant chemolithotropic thermophilic bacteria from mercury rich geothermal springs (2007) Extremophiles, 11, pp. 469-479 Ji, G., Salzberg, S.P., Silver, S., Cell-free mercury volatilization activity from three marine Caulobacter strains (1989) Appl Environ Microbiol, 55, pp. 523-525 Brown, N.L., Stoyanov, J.V., Kidd, S.P., Hobman, J.L., The MerR family of transcriptional regulators (2003) FEMS Microbiol Rev, 27, pp. 145-163 Whiteley, C.G., Lee, D., Enzyme technology and bioremediation (2006) Enzyme Microb Technol, 38, pp. 291-316 Olson, G.J., Porter, F.D., Rubinstein, J., Silver, S., Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans (1982) J Bacteriol, 15, pp. 1230-1236 Bisswanger, H., (2002) Enzyme kinetics - principles and methods, , Wiley-VCH, Germany, 268 pp Somero, G.N., Proteins and temperature (1995) Annu Rev Physiol, 57, pp. 43-68 Zeroual, Y., Moutaouakkil, A., Dzairi, A.Z., Talbi, M., Chung, P.U., Lee, K., Purification and characterization of cytosolic mercuric reductase from Klebsiella pneumonia (2003) Annals Microbiol, 53, pp. 149-160 Ledwidge, R., Hong, B., Dötsh, V., Miller, S.M., NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols (2010) Biochemistry, 49, pp. 8988-8998 Tunga, R., Banerjee, R., Bhattacharyya, B.C., Optimization of n-variable biological experiments by evolutionary operation-factorial design technique (1999) J Biosci Bioeng, 87, pp. 125-131 Gachhuy, J.R., Chaudhuri, J., Ray, S., Pahan, K., Mandal, A., Studies on mercury-detoxicating enzymes from a broad-spectrum mercury-resistant strain of Flavobacterium rigense (1997) Folia Microbiol, 42, pp. 337-343