dc.date2016
dc.date2016-06-03T20:13:51Z
dc.date2016-06-03T20:13:51Z
dc.date.accessioned2018-03-29T01:32:53Z
dc.date.available2018-03-29T01:32:53Z
dc.identifier
dc.identifierNew Biotechnology. Elsevier, v. 33, n. 1, p. 216 - 223, 2016.
dc.identifier18716784
dc.identifier10.1016/j.nbt.2015.05.006
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84947035685&partnerID=40&md5=18e4c5e4b2fecf7b0460eb66c92b8f67
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238130
dc.identifier2-s2.0-84947035685
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304791
dc.descriptionThis study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37°C and 45°C. The ions NH4 +, Ba2+, Sn2+, Ni2+ and Cd2+ neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca2+, Cu+ and K+. The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. © 2015 Elsevier B.V..
dc.description33
dc.description1
dc.description216
dc.description223
dc.description(2002), http://www.chem.unep.ch/MERCURY/, Global Mercury Assessment, Tech. rep., UNEP, Geneva, SwitzerlandMaxson, P., Dynamics of mercury pollution on regional and global scales (2005) Atmospheric processes and human exposures around the world, pp. 25-50. , Springer, New York, N. Pirrone, K.R. Mahaffey (Eds.)
dc.descriptionBoening, D.W., Ecological effects, transport, and fate of mercury: a general review (2000) Chemosphere, 40, pp. 1335-1351
dc.descriptionNies, D.H., Microbial heavy-metal resistance (1999) Appl Microbiol Biotechnol, 51, pp. 730-750
dc.descriptionBarkay, T., Miller, S.M., Summers, A., Bacterial mercury resistance from atoms to ecosystems (2003) FEMS Microbiol Rev, 27, pp. 355-384
dc.descriptionBarkay, T., Wagner-Döbler, I., Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment (2005) Adv Appl Microbiol, 57, pp. 1-52
dc.descriptionSummers, A.O., Untwist and shout. A heavy metal responsive transcriptional regulator (1992) J Bacteriol, 174, pp. 3097-3101
dc.descriptionNarita, M., Chiba, K., Nishizawa, H., Jshij, H., Huang, C.C., Kawabata, Z., Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay (2003) FEMS Microbiol Lett, 223, pp. 73-82
dc.descriptionSilver, S., Hobman, J.L., Mercury microbiology: resistance systems, environmental aspects, methylation, and human health (2007) Microbiol Monographs, 6, pp. 357-370
dc.descriptionEngst, S., Miller, S.M., Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands (1999) Biochemistry, 38, pp. 3519-3529
dc.descriptionCamargo, F.A.O., Bento, F.M., Jacques, R.J.S., Uso de microrganismos para remediação de metais (2007) Tópicos em Ciência do Solo, pp. 468-496. , Sociedade Brasileira de Ciência do Solo, Minas Gerais, C.A. Ceretta, L.S. Silva, J.M. Reichert (Eds.)
dc.descriptionTedesco, M.J., Gianello, C., Bissani, C.A., Análises de solo, plantas e outros materiais (1995) Boletim Técnico, , Universidade Federal do Rio Grande do Sul, Porto Alegre
dc.descriptionTakeuchi, F., Negishi, A., Nakamura, S., Kanao, T., Kamimura, K., Sugio, T., Existence of an iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds (2005) J Biosci Bioeng, 99, pp. 586-591
dc.descriptionSambrook, J., Russell, D.W., (2003) Molecular cloning - a laboratory manual, , Cold Spring Harbor Laboratory Press, New York
dc.descriptionWang, Y., Boyd, E., Crane, S., Lu-Irving, P., Krabbenhoft, D., King, S., Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A. (2011) Microbial Ecol, 62, pp. 739-752
dc.descriptionMurtaza, I., Dutt, A., Ali, A., Relationship between the persistance of mer operon sequences in Escherichia coli and their resistance to mercury (2002) Curr Microbiol, 44, pp. 178-183
dc.descriptionBall, M.M., Mercury resistance in bacterial strains isolated from tailing ponds in a gold mining area near El Callao (Bolívar State, Venezuela) (2007) Curr Microbiol, 54, pp. 149-154
dc.descriptionhttp://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7471b.pdf, EPA 7471B (2009) Mercury in solid or semisolid waste: manual cold-vapor technique Ghosh, S., Sadhukhan, P.C., Ghosh, D.K., Chaudhuri, J., Mandal, A., Purification and properties of mercuric reductase from Azotobacter chroococcum (1999) J Appl Microbiol, 86, pp. 7-12
dc.descriptionLowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J Biol Chem, 193, pp. 265-275
dc.descriptionHorn, J.M., Brunke, M., Deckwer, W.D., Timmis, K.N., Pseudomonas putida strains which constitutively overexpress mercury resistance for biodetoxification of organomercurial pollutants (1994) Appl Environ Microbiol, 60, pp. 357-362
dc.descriptionCanstein, H., Li, Y., Timmis, K.N., Deckwer, W.D., Wagner-Döbler, I., Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain (1999) Appl Environ Microbiol, 65, pp. 5279-5284
dc.descriptionFortunato, R., Crespo, J.G., Reis, M.A.M., Biodegradation of thiomersal containing effluents by a mercury resistant Pseudomonas putida strain (2005) Water Res, 39, pp. 3511-3522
dc.descriptionMortazavi, S., Rezaee, A., Khavanin, A., Vamazyar, S., Jafarzadeh, M., Removal of mercuric chloride by a mercury resistant Pseudomonas putida strain (2005) J Biol Sci, 5, pp. 269-273
dc.descriptionGiovanella, P., Bento, F., Cabral, L., Gianello, C., Camargo, F.A.O., Isolamento e seleção de micro-organismos resistentes e capazes de volatilizar mercúrio (2011) Quim Nova, 34, pp. 232-236
dc.descriptionNakamura, K., Fujisaki, T., Yoshisada, S., Mercury-resistant bacteria in sediment of Minamata Bay (1998) Nippon Suisan Gakkaishi, 54, pp. 1359-1363
dc.descriptionNakamura, K., Iwahara, M., Furukawa, K., Screening of organomercurial-volatilizing bacteria in the mercury-polluted sediments and seawater of Minamata Bay in Japan (2011) Clean Prod Processes, 3, pp. 104-107
dc.descriptionRay, S., Pahan, K., Gachhui, R., Chaudhuri, J., Mandal, A., Studies on the mercury volatilizing enzymes in nitrogen-fixing Beijerinckia mobilis (1993) World J Microbiol Biotechnol, 9, pp. 184-186
dc.descriptionSadhukhan, P.C., Ghosh, S., Chaudhuri, J., Ghosh, D.K., Mandal, A., Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta (1997) Environ Pollut, 97, pp. 71-78
dc.descriptionGhosh, S., Sadhukhan, P.C., Ghosh, D.K., Mandal, A.K., Chaudhuri, J., Mandal, A., Studies on the effect of mercury and organomercurial on the growth and nitrogen fixation by mercury-resistant Azotobacter strains (1996) J Appl Bacteriol, 80, pp. 319-326
dc.descriptionCabral, L., Giovanella, P., Gianello, C., Bento, F.M., Andreazza, R., Camargo, F.A.O., Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain (2013) Biodegradation, 24, pp. 319-331
dc.descriptionViloca, M.G., Gao, J., Karplus, M., Truhlar, D.G., How enzymes work: analysis by modern rate theory and computer simulations (2004) Science, 303, pp. 186-195
dc.descriptionKannan, S.K., Krishnamoorthy, R., Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury: a case study in Pulicat lake north of Chennai, South East India (2006) Sci Total Environ, 367, pp. 341-353
dc.descriptionVetriani, C., Chew, Y.S., Miller, S.M., Yagi, J., Coombs, J., Lutz, R.A., Mercury adaptation among bacteria from a deep-sea hydrothermal vent (2005) Appl Environ Microbiol, 71, pp. 220-226
dc.descriptionChatziefthimou, A., Crespo-Medina, M., Wang, Y., Vetriani, C., Barkay, T., The isolation and initial characterization of mercury resistant chemolithotropic thermophilic bacteria from mercury rich geothermal springs (2007) Extremophiles, 11, pp. 469-479
dc.descriptionJi, G., Salzberg, S.P., Silver, S., Cell-free mercury volatilization activity from three marine Caulobacter strains (1989) Appl Environ Microbiol, 55, pp. 523-525
dc.descriptionBrown, N.L., Stoyanov, J.V., Kidd, S.P., Hobman, J.L., The MerR family of transcriptional regulators (2003) FEMS Microbiol Rev, 27, pp. 145-163
dc.descriptionWhiteley, C.G., Lee, D., Enzyme technology and bioremediation (2006) Enzyme Microb Technol, 38, pp. 291-316
dc.descriptionOlson, G.J., Porter, F.D., Rubinstein, J., Silver, S., Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans (1982) J Bacteriol, 15, pp. 1230-1236
dc.descriptionBisswanger, H., (2002) Enzyme kinetics - principles and methods, , Wiley-VCH, Germany, 268 pp
dc.descriptionSomero, G.N., Proteins and temperature (1995) Annu Rev Physiol, 57, pp. 43-68
dc.descriptionZeroual, Y., Moutaouakkil, A., Dzairi, A.Z., Talbi, M., Chung, P.U., Lee, K., Purification and characterization of cytosolic mercuric reductase from Klebsiella pneumonia (2003) Annals Microbiol, 53, pp. 149-160
dc.descriptionLedwidge, R., Hong, B., Dötsh, V., Miller, S.M., NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols (2010) Biochemistry, 49, pp. 8988-8998
dc.descriptionTunga, R., Banerjee, R., Bhattacharyya, B.C., Optimization of n-variable biological experiments by evolutionary operation-factorial design technique (1999) J Biosci Bioeng, 87, pp. 125-131
dc.descriptionGachhuy, J.R., Chaudhuri, J., Ray, S., Pahan, K., Mandal, A., Studies on mercury-detoxicating enzymes from a broad-spectrum mercury-resistant strain of Flavobacterium rigense (1997) Folia Microbiol, 42, pp. 337-343
dc.description
dc.description
dc.languageen
dc.publisherElsevier
dc.relationNew Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleMercury (ii) Removal By Resistant Bacterial Isolates And Mercuric (ii) Reductase Activity In A New Strain Of Pseudomonas Sp. B50a
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución