Artículos de revistas
Solutions For The Klein–gordon And Dirac Equations On The Lattice Based On Chebyshev Polynomials
Registro en:
Complex Analysis And Operator Theory. Birkhauser Verlag Ag, v. 10, n. 2, p. 379 - 399, 2016.
16618254
10.1007/s11785-015-0476-5
2-s2.0-84955641028
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) The main goal of this paper is to adopt a multivector calculus scheme to study finite difference discretizations of Klein–Gordon and Dirac equations for which Chebyshev polynomials of the first kind may be used to represent a set of solutions. The development of a well-adapted discrete Clifford calculus framework based on spinor fields allows us to represent, using solely projection based arguments, the solutions for the discretized Dirac equations from the knowledge of the solutions of the discretized Klein–Gordon equation. Implications of those findings on the interpretation of the lattice fermion doubling problem is briefly discussed. © 2015, Springer Basel. 10 2 379 399 13/07590-8, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Becher, P., Joos, H., The Dirac–Kähler equation and fermions on the lattice (1982) Z. Phys. C, 15, pp. 343-365 Bohm, D., Space, time, and the quantum theory understood in terms of discrete structural process (1965) Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 252-287 Borici, A., Creutz fermions on an orthogonal lattice (2008) Phys. Rev. D, 78 (7), p. 074504 Borštnik, N.M., Nielsen, H.B., Dirac-Kähler approach connected to quantum mechanics in Grassmann space (2000) Phys. Rev. D, 62 (4), p. 044010 Cerejeiras, P., Kähler, U., Ku, M., Sommen, F., Discrete Hardy Spaces (2014) J. Fourier Anal. Appl., 20 (4), pp. 715-750 Chan, Y.-S., Fannjiang, A.C., Paulino, G.H., Integral equations with hypersingular kernels-theory and applications to fracture mechanics (2003) Int. J. Eng. Sci., 41 (7), pp. 683-720 Chelkak, D., Smirnov, S., Universality in the 2D Ising model and conformal invariance of fermionic observables (2012) Invent. Math., 189 (3), pp. 515-580 Cole, E.A.B., Transition from a continuous to a discrete space-time scheme (1970) Il Nuovo Cimento A, 66 (4), pp. 645-656 Constales, D., Faustino, N., Kraußhar, R.S., Fock spaces. Landau operators and the time-harmonic Maxwell equations (2011) J. Phys. A Math. Theor., 44 (13), p. 135303 Creutz, M., Local chiral fermions The XXVI International Symposium on Lattice Field Theory (2008). arXiv, 808, p. 0014. , arXiv:0808.0014 da Rocha, R., Vaz, J., Jr., Extended Grassmann and Clifford algebras (2006) Adv. Appl. Clifford Algebr., 16 (2), pp. 103-125 da Veiga, P.A.F., O’Carroll, M., Schor, R., Excitation spectrum and staggering transformations in lattice quantum models (2002) Phys. Rev. E, 66 (2), p. 027108 Dimakis, A., Müller-Hoissen, F., Discrete differential calculus: graphs, topologies, and gauge theory (1994) J. Math. Phys., 35 (12), pp. 6703-6735 Faustino, N., Kähler, U., Sommen, F., Discrete Dirac operators in Clifford analysis (2007) Adv. Appl. Clifford Algebr., 17 (3), pp. 451-467 Faustino, N., (2009) Discrete Clifford analysis, Dissertation, , http://hdl.handle.net/10773/2942, Ria Repositório Institucional, Universidade de Aveiro Faustino, N., Classes of hypercomplex polynomials of discrete variable based on the quasi-monomiality principle (2014) Appl. Math. Comput., 247, pp. 607-622 Friedan, D., A proof of the Nielsen–Ninomiya theorem (1982) Commun. Math. Phys, 85 (4), pp. 481-490 Froyen, S., Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations (1989) Phys. Rev. B, 39 (5), pp. 3168-3172 Gürlebeck, K., Hommel, A., On finite difference Dirac operators and their fundamental solutions (2001) Adv. Appl. Clifford Algebr., 11 (2), pp. 89-106 Kanamori, I., Kawamoto, N., Dirac–Kaehler fermion from Clifford product with noncommutative differential form on a lattice (2004) Int. J. Mod. Phys. A, 19 (5), pp. 695-736 Kogut, J., Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories (1975) Phys. Rev. D, 11 (2), pp. 395-408 Mercat, C., Discrete Riemann surfaces and the Ising model (2001) Commun. Math. Phys., 218 (1), pp. 177-216 Monaco, R.L., de Oliveira, E.C., A new approach for the Jeffreys–Wentzel–Kramers–Brillouin theory (1994) J. Math. Phys., 35 (12), pp. 6371-6378 Montvay, I., Münster, G., (1994) Quantum Fields on a Lattice, , Cambridge University Press, Cambridge Nielsen, H.B., Ninomiya, M., A no-go theorem for regularizing chiral fermions (1981) Phys. Lett. B, 105 (2), pp. 219-223 Rabin, J., Homology theory of lattice fermion doubling (1982) Nucl. Phys. B, 201 (2), pp. 315-332 Rodrigues, W.A., Jr., de Oliveira, E.C., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, , 722, Springer, Heidelberg Vaz, J., Jr., Clifford-like calculus over lattices (1997) Adv. Appl. Clifford Algebr., 7 (1), pp. 37-70 Vaz, J., (1997) Clifford algebras and Witten’s monopole equations In: Apanasov, B., Rodrigues, U. (eds). Geometry, topology and physics: interfaces in computer science and operations research, 2nd edn, vol 2, pp, 277-300. , Walter de Gruyter & Co., Berlin Wilson, W.K., Confinement of quarks (1974) Phys. Rev. D, 10 (8), pp. 2445-2459