dc.date | 2016 | |
dc.date | 2016-06-03T20:12:24Z | |
dc.date | 2016-06-03T20:12:24Z | |
dc.date.accessioned | 2018-03-29T01:31:37Z | |
dc.date.available | 2018-03-29T01:31:37Z | |
dc.identifier | | |
dc.identifier | Complex Analysis And Operator Theory. Birkhauser Verlag Ag, v. 10, n. 2, p. 379 - 399, 2016. | |
dc.identifier | 16618254 | |
dc.identifier | 10.1007/s11785-015-0476-5 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84955641028&partnerID=40&md5=bc67f13e874aea8868731d1996e020ce | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/237818 | |
dc.identifier | 2-s2.0-84955641028 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304479 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | The main goal of this paper is to adopt a multivector calculus scheme to study finite difference discretizations of Klein–Gordon and Dirac equations for which Chebyshev polynomials of the first kind may be used to represent a set of solutions. The development of a well-adapted discrete Clifford calculus framework based on spinor fields allows us to represent, using solely projection based arguments, the solutions for the discretized Dirac equations from the knowledge of the solutions of the discretized Klein–Gordon equation. Implications of those findings on the interpretation of the lattice fermion doubling problem is briefly discussed. © 2015, Springer Basel. | |
dc.description | 10 | |
dc.description | 2 | |
dc.description | 379 | |
dc.description | 399 | |
dc.description | 13/07590-8, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Becher, P., Joos, H., The Dirac–Kähler equation and fermions on the lattice (1982) Z. Phys. C, 15, pp. 343-365 | |
dc.description | Bohm, D., Space, time, and the quantum theory understood in terms of discrete structural process (1965) Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 252-287 | |
dc.description | Borici, A., Creutz fermions on an orthogonal lattice (2008) Phys. Rev. D, 78 (7), p. 074504 | |
dc.description | Borštnik, N.M., Nielsen, H.B., Dirac-Kähler approach connected to quantum mechanics in Grassmann space (2000) Phys. Rev. D, 62 (4), p. 044010 | |
dc.description | Cerejeiras, P., Kähler, U., Ku, M., Sommen, F., Discrete Hardy Spaces (2014) J. Fourier Anal. Appl., 20 (4), pp. 715-750 | |
dc.description | Chan, Y.-S., Fannjiang, A.C., Paulino, G.H., Integral equations with hypersingular kernels-theory and applications to fracture mechanics (2003) Int. J. Eng. Sci., 41 (7), pp. 683-720 | |
dc.description | Chelkak, D., Smirnov, S., Universality in the 2D Ising model and conformal invariance of fermionic observables (2012) Invent. Math., 189 (3), pp. 515-580 | |
dc.description | Cole, E.A.B., Transition from a continuous to a discrete space-time scheme (1970) Il Nuovo Cimento A, 66 (4), pp. 645-656 | |
dc.description | Constales, D., Faustino, N., Kraußhar, R.S., Fock spaces. Landau operators and the time-harmonic Maxwell equations (2011) J. Phys. A Math. Theor., 44 (13), p. 135303 | |
dc.description | Creutz, M., Local chiral fermions The XXVI International Symposium on Lattice Field Theory (2008). arXiv, 808, p. 0014. , arXiv:0808.0014 | |
dc.description | da Rocha, R., Vaz, J., Jr., Extended Grassmann and Clifford algebras (2006) Adv. Appl. Clifford Algebr., 16 (2), pp. 103-125 | |
dc.description | da Veiga, P.A.F., O’Carroll, M., Schor, R., Excitation spectrum and staggering transformations in lattice quantum models (2002) Phys. Rev. E, 66 (2), p. 027108 | |
dc.description | Dimakis, A., Müller-Hoissen, F., Discrete differential calculus: graphs, topologies, and gauge theory (1994) J. Math. Phys., 35 (12), pp. 6703-6735 | |
dc.description | Faustino, N., Kähler, U., Sommen, F., Discrete Dirac operators in Clifford analysis (2007) Adv. Appl. Clifford Algebr., 17 (3), pp. 451-467 | |
dc.description | Faustino, N., (2009) Discrete Clifford analysis, Dissertation, , http://hdl.handle.net/10773/2942, Ria Repositório Institucional, Universidade de Aveiro | |
dc.description | Faustino, N., Classes of hypercomplex polynomials of discrete variable based on the quasi-monomiality principle (2014) Appl. Math. Comput., 247, pp. 607-622 | |
dc.description | Friedan, D., A proof of the Nielsen–Ninomiya theorem (1982) Commun. Math. Phys, 85 (4), pp. 481-490 | |
dc.description | Froyen, S., Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations (1989) Phys. Rev. B, 39 (5), pp. 3168-3172 | |
dc.description | Gürlebeck, K., Hommel, A., On finite difference Dirac operators and their fundamental solutions (2001) Adv. Appl. Clifford Algebr., 11 (2), pp. 89-106 | |
dc.description | Kanamori, I., Kawamoto, N., Dirac–Kaehler fermion from Clifford product with noncommutative differential form on a lattice (2004) Int. J. Mod. Phys. A, 19 (5), pp. 695-736 | |
dc.description | Kogut, J., Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories (1975) Phys. Rev. D, 11 (2), pp. 395-408 | |
dc.description | Mercat, C., Discrete Riemann surfaces and the Ising model (2001) Commun. Math. Phys., 218 (1), pp. 177-216 | |
dc.description | Monaco, R.L., de Oliveira, E.C., A new approach for the Jeffreys–Wentzel–Kramers–Brillouin theory (1994) J. Math. Phys., 35 (12), pp. 6371-6378 | |
dc.description | Montvay, I., Münster, G., (1994) Quantum Fields on a Lattice, , Cambridge University Press, Cambridge | |
dc.description | Nielsen, H.B., Ninomiya, M., A no-go theorem for regularizing chiral fermions (1981) Phys. Lett. B, 105 (2), pp. 219-223 | |
dc.description | Rabin, J., Homology theory of lattice fermion doubling (1982) Nucl. Phys. B, 201 (2), pp. 315-332 | |
dc.description | Rodrigues, W.A., Jr., de Oliveira, E.C., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, , 722, Springer, Heidelberg | |
dc.description | Vaz, J., Jr., Clifford-like calculus over lattices (1997) Adv. Appl. Clifford Algebr., 7 (1), pp. 37-70 | |
dc.description | Vaz, J., (1997) Clifford algebras and Witten’s monopole equations In: Apanasov, B., Rodrigues, U. (eds). Geometry, topology and physics: interfaces in computer science and operations research, 2nd edn, vol 2, pp, 277-300. , Walter de Gruyter & Co., Berlin | |
dc.description | Wilson, W.K., Confinement of quarks (1974) Phys. Rev. D, 10 (8), pp. 2445-2459 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Birkhauser Verlag AG | |
dc.relation | Complex Analysis and Operator Theory | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Solutions For The Klein–gordon And Dirac Equations On The Lattice Based On Chebyshev Polynomials | |
dc.type | Artículos de revistas | |