dc.date2016
dc.date2016-06-03T20:12:24Z
dc.date2016-06-03T20:12:24Z
dc.date.accessioned2018-03-29T01:31:37Z
dc.date.available2018-03-29T01:31:37Z
dc.identifier
dc.identifierComplex Analysis And Operator Theory. Birkhauser Verlag Ag, v. 10, n. 2, p. 379 - 399, 2016.
dc.identifier16618254
dc.identifier10.1007/s11785-015-0476-5
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84955641028&partnerID=40&md5=bc67f13e874aea8868731d1996e020ce
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/237818
dc.identifier2-s2.0-84955641028
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304479
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThe main goal of this paper is to adopt a multivector calculus scheme to study finite difference discretizations of Klein–Gordon and Dirac equations for which Chebyshev polynomials of the first kind may be used to represent a set of solutions. The development of a well-adapted discrete Clifford calculus framework based on spinor fields allows us to represent, using solely projection based arguments, the solutions for the discretized Dirac equations from the knowledge of the solutions of the discretized Klein–Gordon equation. Implications of those findings on the interpretation of the lattice fermion doubling problem is briefly discussed. © 2015, Springer Basel.
dc.description10
dc.description2
dc.description379
dc.description399
dc.description13/07590-8, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionBecher, P., Joos, H., The Dirac–Kähler equation and fermions on the lattice (1982) Z. Phys. C, 15, pp. 343-365
dc.descriptionBohm, D., Space, time, and the quantum theory understood in terms of discrete structural process (1965) Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 252-287
dc.descriptionBorici, A., Creutz fermions on an orthogonal lattice (2008) Phys. Rev. D, 78 (7), p. 074504
dc.descriptionBorštnik, N.M., Nielsen, H.B., Dirac-Kähler approach connected to quantum mechanics in Grassmann space (2000) Phys. Rev. D, 62 (4), p. 044010
dc.descriptionCerejeiras, P., Kähler, U., Ku, M., Sommen, F., Discrete Hardy Spaces (2014) J. Fourier Anal. Appl., 20 (4), pp. 715-750
dc.descriptionChan, Y.-S., Fannjiang, A.C., Paulino, G.H., Integral equations with hypersingular kernels-theory and applications to fracture mechanics (2003) Int. J. Eng. Sci., 41 (7), pp. 683-720
dc.descriptionChelkak, D., Smirnov, S., Universality in the 2D Ising model and conformal invariance of fermionic observables (2012) Invent. Math., 189 (3), pp. 515-580
dc.descriptionCole, E.A.B., Transition from a continuous to a discrete space-time scheme (1970) Il Nuovo Cimento A, 66 (4), pp. 645-656
dc.descriptionConstales, D., Faustino, N., Kraußhar, R.S., Fock spaces. Landau operators and the time-harmonic Maxwell equations (2011) J. Phys. A Math. Theor., 44 (13), p. 135303
dc.descriptionCreutz, M., Local chiral fermions The XXVI International Symposium on Lattice Field Theory (2008). arXiv, 808, p. 0014. , arXiv:0808.0014
dc.descriptionda Rocha, R., Vaz, J., Jr., Extended Grassmann and Clifford algebras (2006) Adv. Appl. Clifford Algebr., 16 (2), pp. 103-125
dc.descriptionda Veiga, P.A.F., O’Carroll, M., Schor, R., Excitation spectrum and staggering transformations in lattice quantum models (2002) Phys. Rev. E, 66 (2), p. 027108
dc.descriptionDimakis, A., Müller-Hoissen, F., Discrete differential calculus: graphs, topologies, and gauge theory (1994) J. Math. Phys., 35 (12), pp. 6703-6735
dc.descriptionFaustino, N., Kähler, U., Sommen, F., Discrete Dirac operators in Clifford analysis (2007) Adv. Appl. Clifford Algebr., 17 (3), pp. 451-467
dc.descriptionFaustino, N., (2009) Discrete Clifford analysis, Dissertation, , http://hdl.handle.net/10773/2942, Ria Repositório Institucional, Universidade de Aveiro
dc.descriptionFaustino, N., Classes of hypercomplex polynomials of discrete variable based on the quasi-monomiality principle (2014) Appl. Math. Comput., 247, pp. 607-622
dc.descriptionFriedan, D., A proof of the Nielsen–Ninomiya theorem (1982) Commun. Math. Phys, 85 (4), pp. 481-490
dc.descriptionFroyen, S., Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations (1989) Phys. Rev. B, 39 (5), pp. 3168-3172
dc.descriptionGürlebeck, K., Hommel, A., On finite difference Dirac operators and their fundamental solutions (2001) Adv. Appl. Clifford Algebr., 11 (2), pp. 89-106
dc.descriptionKanamori, I., Kawamoto, N., Dirac–Kaehler fermion from Clifford product with noncommutative differential form on a lattice (2004) Int. J. Mod. Phys. A, 19 (5), pp. 695-736
dc.descriptionKogut, J., Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories (1975) Phys. Rev. D, 11 (2), pp. 395-408
dc.descriptionMercat, C., Discrete Riemann surfaces and the Ising model (2001) Commun. Math. Phys., 218 (1), pp. 177-216
dc.descriptionMonaco, R.L., de Oliveira, E.C., A new approach for the Jeffreys–Wentzel–Kramers–Brillouin theory (1994) J. Math. Phys., 35 (12), pp. 6371-6378
dc.descriptionMontvay, I., Münster, G., (1994) Quantum Fields on a Lattice, , Cambridge University Press, Cambridge
dc.descriptionNielsen, H.B., Ninomiya, M., A no-go theorem for regularizing chiral fermions (1981) Phys. Lett. B, 105 (2), pp. 219-223
dc.descriptionRabin, J., Homology theory of lattice fermion doubling (1982) Nucl. Phys. B, 201 (2), pp. 315-332
dc.descriptionRodrigues, W.A., Jr., de Oliveira, E.C., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, , 722, Springer, Heidelberg
dc.descriptionVaz, J., Jr., Clifford-like calculus over lattices (1997) Adv. Appl. Clifford Algebr., 7 (1), pp. 37-70
dc.descriptionVaz, J., (1997) Clifford algebras and Witten’s monopole equations In: Apanasov, B., Rodrigues, U. (eds). Geometry, topology and physics: interfaces in computer science and operations research, 2nd edn, vol 2, pp, 277-300. , Walter de Gruyter & Co., Berlin
dc.descriptionWilson, W.K., Confinement of quarks (1974) Phys. Rev. D, 10 (8), pp. 2445-2459
dc.description
dc.description
dc.languageen
dc.publisherBirkhauser Verlag AG
dc.relationComplex Analysis and Operator Theory
dc.rightsfechado
dc.sourceScopus
dc.titleSolutions For The Klein–gordon And Dirac Equations On The Lattice Based On Chebyshev Polynomials
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución