Artículos de revistas
Bifurcation And Multiplicity Results For Critical Nonlocal Fractional Laplacian Problems
Registro en:
Bulletin Des Sciences Mathematiques. Elsevier Masson Sas, v. 140, n. 1, p. 14 - 35, 2016.
74497
10.1016/j.bulsci.2015.10.001
2-s2.0-84955469480
Institución
Resumen
In this paper we consider the following critical nonlocal problem, where s∈(0, 1), Ω is an open bounded subset of Rn, n>2s, with continuous boundary, λ is a positive real parameter, 2*:=2n/(n-2s) is the fractional critical Sobolev exponent, while LK is the nonlocal integrodifferential operator, whose model is given by the fractional Laplacian -(-δ)s.Along the paper, we prove a multiplicity and bifurcation result for this problem, using a classical theorem in critical points theory. Precisely, we show that in a suitable left neighborhood of any eigenvalue of -LK (with Dirichlet boundary data) the number of nontrivial solutions for the problem under consideration is at least twice the multiplicity of the eigenvalue. Hence, we extend the result got by Cerami, Fortunato and Struwe in [14] for classical elliptic equations, to the case of nonlocal fractional operators. © 2015 Elsevier Masson SAS. 140 1 14 35 Adams, R.A., (1975) Sobolev Spaces, , Academic Press, New York Applebaum, D., Lévy Processes and Stochastic Calculus (2009) Cambridge Studies in Advanced Mathematics, 116. , Cambridge University Press, Cambridge Ambrosetti, A., Rabinowitz, P., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14, pp. 349-381 Autuori, G., Fiscella, A., Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity (2015) Nonlinear Anal., 125, pp. 699-714 Barrios, B., Colorado, E., De Pablo, A., Sanchez, U., On some critical problems for the fractional Laplacian operator (2012) J. Differ. Equ., 252, pp. 6133-6162 Bartolo, P., Benci, V., Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity (1983) Nonlinear Anal., 7, pp. 981-1012 Benci, V., On critical point theory for indefinite functionals in the presence of symmetries (1982) Trans. Am. Math. Soc., 274 (2), pp. 533-572 Bertoin, J., Lévy Processes (1996) Cambridge Tracts in Mathematics, 121. , Cambridge University Press, Cambridge Brezis, H., Lieb, E., A relation between pointwise convergence of functions and convergence of functionals (1983) Proc. Am. Math. Soc., 88 (3), pp. 486-490 Brezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents (1983) Commun. Pure Appl. Math., 36 (4), pp. 437-477 Caffarelli, L., Non-local diffusions, drifts and games (2012) Abel Symposia, 7, pp. 37-52. , Springer-Verlag, Berlin, Heidelberg, H. Holden, K.H. Karlsen (Eds.) Nonlinear Partial Differential Equations: The Abel Symposium 2010 Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Commun. Partial Differ. Equ., 32, pp. 1245-1260 Capozzi, A., Fortunato, D., Palmieri, G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent (1985) Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 2 (6), pp. 463-470 Cerami, G., Fortunato, D., Struwe, M., Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents (1984) Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (5), pp. 341-350 Cerami, G., Solimini, S., Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents (1986) J. Funct. Anal., 69 (3), pp. 289-306 Chen, Z., Shioji, N., Zou, W., Ground state and multiple solutions for a critical exponent problem (2012) Nonlinear Differ. Equ. Appl., 19 (3), pp. 253-277 Clapp, M., Weth, T., Multiple solutions for the Brezis-Nirenberg problem (2005) Adv. Differ. Equ., 10 (4), pp. 463-480 Cont, R., Tankov, P., Financial Modelling with Jump Processes (2004) Chapman & Hall/CRC Financial Mathematics Series, , Chapman & Hall/CRC, Boca Raton, Fl Devillanova, G., Solimini, S., Concentration estimates and multiple solutions to elliptic problems at critical growth (2002) Adv. Differ. Equ., 7 (10), pp. 1257-1280 Devillanova, G., Solimini, S., A multiplicity result for elliptic equations at critical growth in low dimension (2003) Commun. Contemp. Math., 5 (2), pp. 171-177 Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573 Gazzola, F., Ruf, B., Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations (1997) Adv. Differ. Equ., 2 (4), pp. 555-572 Majda, A., Tabak, E., A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow (1996) Phys. D, 98 (2-4), pp. 515-522. , Nonlinear Phenomena in Ocean Dynamics Molica Bisci, G., Servadei, R., Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent (2015) Adv. Differ. Equ., 20 (7-8), pp. 635-660 Rabinowitz, P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations (1986) CBMS Reg. Conf. Ser. Math., 65. , American Mathematical Society, Providence, RI Schechter, M., Zou, W., On the Brezis-Nirenberg problem (2010) Arch. Ration. Mech. Anal., 197 (1), pp. 337-356 Servadei, R., The Yamabe equation in a non-local setting (2013) Adv. Nonlinear Anal., 2, pp. 235-270 Servadei, R., A critical fractional Laplace equation in the resonant case (2014) Topol. Methods Nonlinear Anal., 43 (1), pp. 251-267 Servadei, R., Valdinoci, E., Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators (2013) Rev. Mat. Iberoam., 29 (3), pp. 1091-1126 Servadei, R., Valdinoci, E., Mountain Pass solutions for non-local elliptic operators (2012) J. Math. Anal. Appl., 389, pp. 887-898 Servadei, R., Valdinoci, E., Variational methods for non-local operators of elliptic type (2013) Discrete Contin. Dyn. Syst., 33 (5), pp. 2105-2137 Servadei, R., Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian (2015) Trans. Am. Math. Soc., 367 (1), pp. 67-102 Servadei, R., Valdinoci, E., A Brezis-Nirenberg result for non-local critical equations in low dimension (2013) Commun. Pure Appl. Anal., 12 (6), pp. 2445-2464 Servadei, R., Valdinoci, E., Fractional Laplacian equations with critical Sobolev exponent (2015) Rev. Mat. Complut., 28 (3), pp. 655-676 Szulkin, A., Weth, T., Willem, M., Ground state solutions for a semilinear problem with critical exponent (2009) Differ. Integral Equ., 22 (9-10), pp. 913-926 Tan, J., The Brezis-Nirenberg type problem involving the square root of the Laplacian (2011) Calc. Var. Partial Differ. Equ., 36 (1-2), pp. 21-41 Valdinoci, E., From the long jump random walk to the fractional Laplacian (2009) Bol. Soc. Esp. Mat. Apl., 49, pp. 33-44 Vázquez, J.L., Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators (2014) Discrete Contin. Dyn. Syst., Ser. A, 7 (4), pp. 857-885 Vlahos, L., Isliker, H., Kominis, Y., Hizonidis, K., Normal and anomalous diffusion: a tutorial (2008) Order and Chaos, 10. , Patras University Press, T. Bountis (Ed.) Zhang, D., On multiple solutions of -δu+λu+|u|4/(n-2)u=0 (1989) Nonlinear Anal., 13, pp. 353-372