dc.date2016
dc.date2016-06-03T20:12:04Z
dc.date2016-06-03T20:12:04Z
dc.date.accessioned2018-03-29T01:31:20Z
dc.date.available2018-03-29T01:31:20Z
dc.identifier
dc.identifierBulletin Des Sciences Mathematiques. Elsevier Masson Sas, v. 140, n. 1, p. 14 - 35, 2016.
dc.identifier74497
dc.identifier10.1016/j.bulsci.2015.10.001
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84955469480&partnerID=40&md5=458d694af67d74676b78e3ba62781fe5
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/237749
dc.identifier2-s2.0-84955469480
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1304410
dc.descriptionIn this paper we consider the following critical nonlocal problem, where s∈(0, 1), Ω is an open bounded subset of Rn, n>2s, with continuous boundary, λ is a positive real parameter, 2*:=2n/(n-2s) is the fractional critical Sobolev exponent, while LK is the nonlocal integrodifferential operator, whose model is given by the fractional Laplacian -(-δ)s.Along the paper, we prove a multiplicity and bifurcation result for this problem, using a classical theorem in critical points theory. Precisely, we show that in a suitable left neighborhood of any eigenvalue of -LK (with Dirichlet boundary data) the number of nontrivial solutions for the problem under consideration is at least twice the multiplicity of the eigenvalue. Hence, we extend the result got by Cerami, Fortunato and Struwe in [14] for classical elliptic equations, to the case of nonlocal fractional operators. © 2015 Elsevier Masson SAS.
dc.description140
dc.description1
dc.description14
dc.description35
dc.descriptionAdams, R.A., (1975) Sobolev Spaces, , Academic Press, New York
dc.descriptionApplebaum, D., Lévy Processes and Stochastic Calculus (2009) Cambridge Studies in Advanced Mathematics, 116. , Cambridge University Press, Cambridge
dc.descriptionAmbrosetti, A., Rabinowitz, P., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14, pp. 349-381
dc.descriptionAutuori, G., Fiscella, A., Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity (2015) Nonlinear Anal., 125, pp. 699-714
dc.descriptionBarrios, B., Colorado, E., De Pablo, A., Sanchez, U., On some critical problems for the fractional Laplacian operator (2012) J. Differ. Equ., 252, pp. 6133-6162
dc.descriptionBartolo, P., Benci, V., Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity (1983) Nonlinear Anal., 7, pp. 981-1012
dc.descriptionBenci, V., On critical point theory for indefinite functionals in the presence of symmetries (1982) Trans. Am. Math. Soc., 274 (2), pp. 533-572
dc.descriptionBertoin, J., Lévy Processes (1996) Cambridge Tracts in Mathematics, 121. , Cambridge University Press, Cambridge
dc.descriptionBrezis, H., Lieb, E., A relation between pointwise convergence of functions and convergence of functionals (1983) Proc. Am. Math. Soc., 88 (3), pp. 486-490
dc.descriptionBrezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents (1983) Commun. Pure Appl. Math., 36 (4), pp. 437-477
dc.descriptionCaffarelli, L., Non-local diffusions, drifts and games (2012) Abel Symposia, 7, pp. 37-52. , Springer-Verlag, Berlin, Heidelberg, H. Holden, K.H. Karlsen (Eds.) Nonlinear Partial Differential Equations: The Abel Symposium 2010
dc.descriptionCaffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Commun. Partial Differ. Equ., 32, pp. 1245-1260
dc.descriptionCapozzi, A., Fortunato, D., Palmieri, G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent (1985) Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 2 (6), pp. 463-470
dc.descriptionCerami, G., Fortunato, D., Struwe, M., Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents (1984) Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (5), pp. 341-350
dc.descriptionCerami, G., Solimini, S., Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents (1986) J. Funct. Anal., 69 (3), pp. 289-306
dc.descriptionChen, Z., Shioji, N., Zou, W., Ground state and multiple solutions for a critical exponent problem (2012) Nonlinear Differ. Equ. Appl., 19 (3), pp. 253-277
dc.descriptionClapp, M., Weth, T., Multiple solutions for the Brezis-Nirenberg problem (2005) Adv. Differ. Equ., 10 (4), pp. 463-480
dc.descriptionCont, R., Tankov, P., Financial Modelling with Jump Processes (2004) Chapman & Hall/CRC Financial Mathematics Series, , Chapman & Hall/CRC, Boca Raton, Fl
dc.descriptionDevillanova, G., Solimini, S., Concentration estimates and multiple solutions to elliptic problems at critical growth (2002) Adv. Differ. Equ., 7 (10), pp. 1257-1280
dc.descriptionDevillanova, G., Solimini, S., A multiplicity result for elliptic equations at critical growth in low dimension (2003) Commun. Contemp. Math., 5 (2), pp. 171-177
dc.descriptionDi Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573
dc.descriptionGazzola, F., Ruf, B., Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations (1997) Adv. Differ. Equ., 2 (4), pp. 555-572
dc.descriptionMajda, A., Tabak, E., A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow (1996) Phys. D, 98 (2-4), pp. 515-522. , Nonlinear Phenomena in Ocean Dynamics
dc.descriptionMolica Bisci, G., Servadei, R., Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent (2015) Adv. Differ. Equ., 20 (7-8), pp. 635-660
dc.descriptionRabinowitz, P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations (1986) CBMS Reg. Conf. Ser. Math., 65. , American Mathematical Society, Providence, RI
dc.descriptionSchechter, M., Zou, W., On the Brezis-Nirenberg problem (2010) Arch. Ration. Mech. Anal., 197 (1), pp. 337-356
dc.descriptionServadei, R., The Yamabe equation in a non-local setting (2013) Adv. Nonlinear Anal., 2, pp. 235-270
dc.descriptionServadei, R., A critical fractional Laplace equation in the resonant case (2014) Topol. Methods Nonlinear Anal., 43 (1), pp. 251-267
dc.descriptionServadei, R., Valdinoci, E., Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators (2013) Rev. Mat. Iberoam., 29 (3), pp. 1091-1126
dc.descriptionServadei, R., Valdinoci, E., Mountain Pass solutions for non-local elliptic operators (2012) J. Math. Anal. Appl., 389, pp. 887-898
dc.descriptionServadei, R., Valdinoci, E., Variational methods for non-local operators of elliptic type (2013) Discrete Contin. Dyn. Syst., 33 (5), pp. 2105-2137
dc.descriptionServadei, R., Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian (2015) Trans. Am. Math. Soc., 367 (1), pp. 67-102
dc.descriptionServadei, R., Valdinoci, E., A Brezis-Nirenberg result for non-local critical equations in low dimension (2013) Commun. Pure Appl. Anal., 12 (6), pp. 2445-2464
dc.descriptionServadei, R., Valdinoci, E., Fractional Laplacian equations with critical Sobolev exponent (2015) Rev. Mat. Complut., 28 (3), pp. 655-676
dc.descriptionSzulkin, A., Weth, T., Willem, M., Ground state solutions for a semilinear problem with critical exponent (2009) Differ. Integral Equ., 22 (9-10), pp. 913-926
dc.descriptionTan, J., The Brezis-Nirenberg type problem involving the square root of the Laplacian (2011) Calc. Var. Partial Differ. Equ., 36 (1-2), pp. 21-41
dc.descriptionValdinoci, E., From the long jump random walk to the fractional Laplacian (2009) Bol. Soc. Esp. Mat. Apl., 49, pp. 33-44
dc.descriptionVázquez, J.L., Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators (2014) Discrete Contin. Dyn. Syst., Ser. A, 7 (4), pp. 857-885
dc.descriptionVlahos, L., Isliker, H., Kominis, Y., Hizonidis, K., Normal and anomalous diffusion: a tutorial (2008) Order and Chaos, 10. , Patras University Press, T. Bountis (Ed.)
dc.descriptionZhang, D., On multiple solutions of -δu+λu+|u|4/(n-2)u=0 (1989) Nonlinear Anal., 13, pp. 353-372
dc.description
dc.description
dc.languageen
dc.publisherElsevier Masson SAS
dc.relationBulletin des Sciences Mathematiques
dc.rightsfechado
dc.sourceScopus
dc.titleBifurcation And Multiplicity Results For Critical Nonlocal Fractional Laplacian Problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución