dc.date | 2016 | |
dc.date | 2016-06-03T20:12:04Z | |
dc.date | 2016-06-03T20:12:04Z | |
dc.date.accessioned | 2018-03-29T01:31:20Z | |
dc.date.available | 2018-03-29T01:31:20Z | |
dc.identifier | | |
dc.identifier | Bulletin Des Sciences Mathematiques. Elsevier Masson Sas, v. 140, n. 1, p. 14 - 35, 2016. | |
dc.identifier | 74497 | |
dc.identifier | 10.1016/j.bulsci.2015.10.001 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84955469480&partnerID=40&md5=458d694af67d74676b78e3ba62781fe5 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/237749 | |
dc.identifier | 2-s2.0-84955469480 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1304410 | |
dc.description | In this paper we consider the following critical nonlocal problem, where s∈(0, 1), Ω is an open bounded subset of Rn, n>2s, with continuous boundary, λ is a positive real parameter, 2*:=2n/(n-2s) is the fractional critical Sobolev exponent, while LK is the nonlocal integrodifferential operator, whose model is given by the fractional Laplacian -(-δ)s.Along the paper, we prove a multiplicity and bifurcation result for this problem, using a classical theorem in critical points theory. Precisely, we show that in a suitable left neighborhood of any eigenvalue of -LK (with Dirichlet boundary data) the number of nontrivial solutions for the problem under consideration is at least twice the multiplicity of the eigenvalue. Hence, we extend the result got by Cerami, Fortunato and Struwe in [14] for classical elliptic equations, to the case of nonlocal fractional operators. © 2015 Elsevier Masson SAS. | |
dc.description | 140 | |
dc.description | 1 | |
dc.description | 14 | |
dc.description | 35 | |
dc.description | Adams, R.A., (1975) Sobolev Spaces, , Academic Press, New York | |
dc.description | Applebaum, D., Lévy Processes and Stochastic Calculus (2009) Cambridge Studies in Advanced Mathematics, 116. , Cambridge University Press, Cambridge | |
dc.description | Ambrosetti, A., Rabinowitz, P., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14, pp. 349-381 | |
dc.description | Autuori, G., Fiscella, A., Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity (2015) Nonlinear Anal., 125, pp. 699-714 | |
dc.description | Barrios, B., Colorado, E., De Pablo, A., Sanchez, U., On some critical problems for the fractional Laplacian operator (2012) J. Differ. Equ., 252, pp. 6133-6162 | |
dc.description | Bartolo, P., Benci, V., Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity (1983) Nonlinear Anal., 7, pp. 981-1012 | |
dc.description | Benci, V., On critical point theory for indefinite functionals in the presence of symmetries (1982) Trans. Am. Math. Soc., 274 (2), pp. 533-572 | |
dc.description | Bertoin, J., Lévy Processes (1996) Cambridge Tracts in Mathematics, 121. , Cambridge University Press, Cambridge | |
dc.description | Brezis, H., Lieb, E., A relation between pointwise convergence of functions and convergence of functionals (1983) Proc. Am. Math. Soc., 88 (3), pp. 486-490 | |
dc.description | Brezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents (1983) Commun. Pure Appl. Math., 36 (4), pp. 437-477 | |
dc.description | Caffarelli, L., Non-local diffusions, drifts and games (2012) Abel Symposia, 7, pp. 37-52. , Springer-Verlag, Berlin, Heidelberg, H. Holden, K.H. Karlsen (Eds.) Nonlinear Partial Differential Equations: The Abel Symposium 2010 | |
dc.description | Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Commun. Partial Differ. Equ., 32, pp. 1245-1260 | |
dc.description | Capozzi, A., Fortunato, D., Palmieri, G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent (1985) Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 2 (6), pp. 463-470 | |
dc.description | Cerami, G., Fortunato, D., Struwe, M., Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents (1984) Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (5), pp. 341-350 | |
dc.description | Cerami, G., Solimini, S., Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents (1986) J. Funct. Anal., 69 (3), pp. 289-306 | |
dc.description | Chen, Z., Shioji, N., Zou, W., Ground state and multiple solutions for a critical exponent problem (2012) Nonlinear Differ. Equ. Appl., 19 (3), pp. 253-277 | |
dc.description | Clapp, M., Weth, T., Multiple solutions for the Brezis-Nirenberg problem (2005) Adv. Differ. Equ., 10 (4), pp. 463-480 | |
dc.description | Cont, R., Tankov, P., Financial Modelling with Jump Processes (2004) Chapman & Hall/CRC Financial Mathematics Series, , Chapman & Hall/CRC, Boca Raton, Fl | |
dc.description | Devillanova, G., Solimini, S., Concentration estimates and multiple solutions to elliptic problems at critical growth (2002) Adv. Differ. Equ., 7 (10), pp. 1257-1280 | |
dc.description | Devillanova, G., Solimini, S., A multiplicity result for elliptic equations at critical growth in low dimension (2003) Commun. Contemp. Math., 5 (2), pp. 171-177 | |
dc.description | Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573 | |
dc.description | Gazzola, F., Ruf, B., Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations (1997) Adv. Differ. Equ., 2 (4), pp. 555-572 | |
dc.description | Majda, A., Tabak, E., A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow (1996) Phys. D, 98 (2-4), pp. 515-522. , Nonlinear Phenomena in Ocean Dynamics | |
dc.description | Molica Bisci, G., Servadei, R., Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent (2015) Adv. Differ. Equ., 20 (7-8), pp. 635-660 | |
dc.description | Rabinowitz, P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations (1986) CBMS Reg. Conf. Ser. Math., 65. , American Mathematical Society, Providence, RI | |
dc.description | Schechter, M., Zou, W., On the Brezis-Nirenberg problem (2010) Arch. Ration. Mech. Anal., 197 (1), pp. 337-356 | |
dc.description | Servadei, R., The Yamabe equation in a non-local setting (2013) Adv. Nonlinear Anal., 2, pp. 235-270 | |
dc.description | Servadei, R., A critical fractional Laplace equation in the resonant case (2014) Topol. Methods Nonlinear Anal., 43 (1), pp. 251-267 | |
dc.description | Servadei, R., Valdinoci, E., Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators (2013) Rev. Mat. Iberoam., 29 (3), pp. 1091-1126 | |
dc.description | Servadei, R., Valdinoci, E., Mountain Pass solutions for non-local elliptic operators (2012) J. Math. Anal. Appl., 389, pp. 887-898 | |
dc.description | Servadei, R., Valdinoci, E., Variational methods for non-local operators of elliptic type (2013) Discrete Contin. Dyn. Syst., 33 (5), pp. 2105-2137 | |
dc.description | Servadei, R., Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian (2015) Trans. Am. Math. Soc., 367 (1), pp. 67-102 | |
dc.description | Servadei, R., Valdinoci, E., A Brezis-Nirenberg result for non-local critical equations in low dimension (2013) Commun. Pure Appl. Anal., 12 (6), pp. 2445-2464 | |
dc.description | Servadei, R., Valdinoci, E., Fractional Laplacian equations with critical Sobolev exponent (2015) Rev. Mat. Complut., 28 (3), pp. 655-676 | |
dc.description | Szulkin, A., Weth, T., Willem, M., Ground state solutions for a semilinear problem with critical exponent (2009) Differ. Integral Equ., 22 (9-10), pp. 913-926 | |
dc.description | Tan, J., The Brezis-Nirenberg type problem involving the square root of the Laplacian (2011) Calc. Var. Partial Differ. Equ., 36 (1-2), pp. 21-41 | |
dc.description | Valdinoci, E., From the long jump random walk to the fractional Laplacian (2009) Bol. Soc. Esp. Mat. Apl., 49, pp. 33-44 | |
dc.description | Vázquez, J.L., Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators (2014) Discrete Contin. Dyn. Syst., Ser. A, 7 (4), pp. 857-885 | |
dc.description | Vlahos, L., Isliker, H., Kominis, Y., Hizonidis, K., Normal and anomalous diffusion: a tutorial (2008) Order and Chaos, 10. , Patras University Press, T. Bountis (Ed.) | |
dc.description | Zhang, D., On multiple solutions of -δu+λu+|u|4/(n-2)u=0 (1989) Nonlinear Anal., 13, pp. 353-372 | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | Elsevier Masson SAS | |
dc.relation | Bulletin des Sciences Mathematiques | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Bifurcation And Multiplicity Results For Critical Nonlocal Fractional Laplacian Problems | |
dc.type | Artículos de revistas | |