dc.creatorde Mendonca, CFX
dc.creatorXavier, EF
dc.creatorStolfi, J
dc.creatorFaria, L
dc.creatorde Figueiredo, CMH
dc.date2005
dc.dateJUL
dc.date2014-08-01T18:23:26Z
dc.date2015-11-26T17:56:29Z
dc.date2014-08-01T18:23:26Z
dc.date2015-11-26T17:56:29Z
dc.date.accessioned2018-03-29T00:40:07Z
dc.date.available2018-03-29T00:40:07Z
dc.identifierArs Combinatoria. Charles Babbage Res Ctr, v. 76, n. 3, n. 28, 2005.
dc.identifier0381-7032
dc.identifierWOS:000230694000001
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78192
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78192
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1291261
dc.descriptionThe non planar vertex deletion or vertex deletion vd(G) of a graph G = (V, E) is the smallest non negative integer k, such that the removal of k vertices from G produces a planar graph. Hence, the maximum planar induced subgraph of G has precisely vertical bar V vertical bar - vd(G) vertices. The problem of computing vertex deletion is in general very hard, it is NP-complete. In this paper we compute the non planar vertex deletion for the family of toroidal graphs C-n x C-m.
dc.description76
dc.description3
dc.description28
dc.languageen
dc.publisherCharles Babbage Res Ctr
dc.publisherWinnipeg
dc.publisherCanadá
dc.relationArs Combinatoria
dc.relationARS Comb.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectnon planar vertex deletion
dc.subjectmaximum planar induced subgraph
dc.subjectnon planar edge deletion
dc.subject4-regular graphs
dc.subjectplanarity invariants
dc.subjectNP-complete
dc.subjectproduct of cycles
dc.subjectCrossing Number
dc.subjectSplitting Number
dc.subjectGraphs
dc.titleThe non planar vertex deletion of C-n x C-m
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución