Artículos de revistas
Incompressible Flow Around a Small Obstacle and the Vanishing Viscosity Limit
Registro en:
Communications In Mathematical Physics. Springer, v. 287, n. 1, n. 99, n. 115, 2009.
0010-3616
WOS:000263360000004
10.1007/s00220-008-0621-3
Autor
Iftimie, D
Lopes, MC
Nussenzveig Lopes, H
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) In this article we consider viscous flow in the exterior of an obstacle satisfying the standard no-slip boundary condition at the surface of the obstacle. We seek conditions under which solutions of the Navier-Stokes system in the exterior domain converge to solutions of the Euler system in the full space when both viscosity and the size of the obstacle vanish. We prove that this convergence is true assuming two hypotheses: first, that the initial exterior domain velocity converges strongly in L (2) to the full-space initial velocity and second, that the diameter of the obstacle is smaller than a suitable constant times viscosity, or, in other words, that the obstacle is sufficiently small. The convergence holds as long as the solution to the limit problem is known to exist and stays sufficiently smooth. This work complements the study of incompressible flow around small obstacles, which has been carried out in [4-6]. 287 1 99 115 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP [2007/51490-7, 2006/04861-7] CNPq [303301/2007-4, 302214/2004-6]