dc.creatorIftimie, D
dc.creatorLopes, MC
dc.creatorNussenzveig Lopes, H
dc.date2009
dc.dateAPR
dc.date2014-11-18T19:04:07Z
dc.date2015-11-26T17:53:20Z
dc.date2014-11-18T19:04:07Z
dc.date2015-11-26T17:53:20Z
dc.date.accessioned2018-03-29T00:36:54Z
dc.date.available2018-03-29T00:36:54Z
dc.identifierCommunications In Mathematical Physics. Springer, v. 287, n. 1, n. 99, n. 115, 2009.
dc.identifier0010-3616
dc.identifierWOS:000263360000004
dc.identifier10.1007/s00220-008-0621-3
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/59988
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/59988
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/59988
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290500
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn this article we consider viscous flow in the exterior of an obstacle satisfying the standard no-slip boundary condition at the surface of the obstacle. We seek conditions under which solutions of the Navier-Stokes system in the exterior domain converge to solutions of the Euler system in the full space when both viscosity and the size of the obstacle vanish. We prove that this convergence is true assuming two hypotheses: first, that the initial exterior domain velocity converges strongly in L (2) to the full-space initial velocity and second, that the diameter of the obstacle is smaller than a suitable constant times viscosity, or, in other words, that the obstacle is sufficiently small. The convergence holds as long as the solution to the limit problem is known to exist and stays sufficiently smooth. This work complements the study of incompressible flow around small obstacles, which has been carried out in [4-6].
dc.description287
dc.description1
dc.description99
dc.description115
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPESP [2007/51490-7, 2006/04861-7]
dc.descriptionCNPq [303301/2007-4, 302214/2004-6]
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationCommunications In Mathematical Physics
dc.relationCommun. Math. Phys.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectNavier-stokes Equations
dc.subjectBoundary-conditions
dc.subjectAnalytic Solutions
dc.subjectInviscid Limit
dc.subjectIdeal Flow
dc.subjectHalf-space
dc.titleIncompressible Flow Around a Small Obstacle and the Vanishing Viscosity Limit
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución