dc.creatorFriedlander, A
dc.creatorMartinez, JM
dc.creatorMolina, B
dc.creatorRaydan, M
dc.date1998
dc.dateDEC 16
dc.date2014-12-02T16:30:07Z
dc.date2015-11-26T17:38:47Z
dc.date2014-12-02T16:30:07Z
dc.date2015-11-26T17:38:47Z
dc.date.accessioned2018-03-29T00:20:28Z
dc.date.available2018-03-29T00:20:28Z
dc.identifierSiam Journal On Numerical Analysis. Siam Publications, v. 36, n. 1, n. 275, n. 289, 1998.
dc.identifier0036-1429
dc.identifierWOS:000079011900001
dc.identifier10.1137/S003614299427315X
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68158
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68158
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68158
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1286308
dc.descriptionA generalization of the steepest descent and other methods for solving a large scale symmetric positive definitive system Ax = b is presented. Given a positive integer m, the new iteration is given by x(k+1) = x(k) - lambda(x(nu(k)))(Ax(k) - b), where lambda(x(nu(k))) is the steepest descent step at a previous iteration nu(k) is an element of {k; k - 1 ,..., max {0, k - m}}. The global convergence to the solution of the problem is established under a more general framework, and numerical experiments are performed that suggest that some strategies for the choice of nu(k) give rise to efficient methods for obtaining approximate solutions of the system.
dc.description36
dc.description1
dc.description275
dc.description289
dc.languageen
dc.publisherSiam Publications
dc.publisherPhiladelphia
dc.publisherEUA
dc.relationSiam Journal On Numerical Analysis
dc.relationSIAM J. Numer. Anal.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectgradient method
dc.subjectBarzilai-Borwein method
dc.subjectRayleigh quotient
dc.subjectconjugate gradient method
dc.subjectsymmetric successive overrelaxation (SSOR) preconditioning strategy
dc.subjectInexact Newton Methods
dc.subjectBarzilai
dc.subjectConvergence
dc.subjectEquations
dc.titleGradient method with retards and generalizations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución