Artículos de revistas
Coherence and uniqueness theorems for averaging processes in statistical mechanics
Registro en:
Acta Applicandae Mathematicae. Kluwer Academic Publ, v. 77, n. 2, n. 105, n. 123, 2003.
0167-8019
WOS:000183320000001
10.1023/A:1024018909120
Autor
Torriani, HH
Hazewinkel, M
Institución
Resumen
Let S be the set of scalings {n(-1) : n = 1, 2, 3,...} and let L-z = zZ(2), z is an element of S, be the corresponding set of scaled lattices in R-2. In this paper averaging operators are defined for plaquette functions on L-z to plaquette functions on L-z' for all z', z is an element of S, z' = dz, d is an element of {2, 3, 4,...}, and their coherence is proved. This generalizes the averaging operators introduced by Balaban and Federbush. There are such coherent families of averaging operators for any dimension D = 1, 2, 3,... and not only for D = 2. Finally there are uniqueness theorems saying that in a sense, besides a form of straightforward averaging, the weights used are the only ones that give coherent families of averaging operators. 77 2 105 123
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Relação da hidrogeologia e os indicadores regionais de vazão na sub-bacia da Lagoa dos Patos
MARCUZZO, Francisco Fernando Noronha; SIMON, Flora Wurth; KIRCHHEIM, Roberto Eduardo -
Algorithm to prioritize maintenance planning in power distribution feeders based on reliability conditions
Camacho-Gavilanes, Jaime; Orquera-Noboa, Gabriel -
Perscrutamento gráfico dos indicadores de variabilidade de vazão na sub-bacia 87
MARCUZZO, Francisco Fernando Noronha; SIMON, Flora Wurth