dc.creator | Torriani, HH | |
dc.creator | Hazewinkel, M | |
dc.date | 2003 | |
dc.date | JUN | |
dc.date | 2014-11-15T03:27:24Z | |
dc.date | 2015-11-26T17:35:53Z | |
dc.date | 2014-11-15T03:27:24Z | |
dc.date | 2015-11-26T17:35:53Z | |
dc.date.accessioned | 2018-03-29T00:18:11Z | |
dc.date.available | 2018-03-29T00:18:11Z | |
dc.identifier | Acta Applicandae Mathematicae. Kluwer Academic Publ, v. 77, n. 2, n. 105, n. 123, 2003. | |
dc.identifier | 0167-8019 | |
dc.identifier | WOS:000183320000001 | |
dc.identifier | 10.1023/A:1024018909120 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78868 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/78868 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/78868 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1285725 | |
dc.description | Let S be the set of scalings {n(-1) : n = 1, 2, 3,...} and let L-z = zZ(2), z is an element of S, be the corresponding set of scaled lattices in R-2. In this paper averaging operators are defined for plaquette functions on L-z to plaquette functions on L-z' for all z', z is an element of S, z' = dz, d is an element of {2, 3, 4,...}, and their coherence is proved. This generalizes the averaging operators introduced by Balaban and Federbush. There are such coherent families of averaging operators for any dimension D = 1, 2, 3,... and not only for D = 2. Finally there are uniqueness theorems saying that in a sense, besides a form of straightforward averaging, the weights used are the only ones that give coherent families of averaging operators. | |
dc.description | 77 | |
dc.description | 2 | |
dc.description | 105 | |
dc.description | 123 | |
dc.language | en | |
dc.publisher | Kluwer Academic Publ | |
dc.publisher | Dordrecht | |
dc.publisher | Holanda | |
dc.relation | Acta Applicandae Mathematicae | |
dc.relation | Acta Appl. Math. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | lattice theory | |
dc.subject | scaling | |
dc.subject | averaging operator | |
dc.subject | coarsening operator | |
dc.subject | scaling limit | |
dc.subject | field theory | |
dc.subject | coherent family of averaging operators | |
dc.subject | Balaban-Federbush averaging | |
dc.subject | plaquette function | |
dc.subject | renormalization | |
dc.subject | BF-average | |
dc.subject | coherent averaging | |
dc.subject | Lattice Gauge-theories | |
dc.subject | Phase Cell Approach | |
dc.subject | Yang-mills Theory | |
dc.subject | Renormalization Transformations | |
dc.subject | Propagators | |
dc.title | Coherence and uniqueness theorems for averaging processes in statistical mechanics | |
dc.type | Artículos de revistas | |