dc.creatorTorriani, HH
dc.creatorHazewinkel, M
dc.date2003
dc.dateJUN
dc.date2014-11-15T03:27:24Z
dc.date2015-11-26T17:35:53Z
dc.date2014-11-15T03:27:24Z
dc.date2015-11-26T17:35:53Z
dc.date.accessioned2018-03-29T00:18:11Z
dc.date.available2018-03-29T00:18:11Z
dc.identifierActa Applicandae Mathematicae. Kluwer Academic Publ, v. 77, n. 2, n. 105, n. 123, 2003.
dc.identifier0167-8019
dc.identifierWOS:000183320000001
dc.identifier10.1023/A:1024018909120
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78868
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/78868
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78868
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285725
dc.descriptionLet S be the set of scalings {n(-1) : n = 1, 2, 3,...} and let L-z = zZ(2), z is an element of S, be the corresponding set of scaled lattices in R-2. In this paper averaging operators are defined for plaquette functions on L-z to plaquette functions on L-z' for all z', z is an element of S, z' = dz, d is an element of {2, 3, 4,...}, and their coherence is proved. This generalizes the averaging operators introduced by Balaban and Federbush. There are such coherent families of averaging operators for any dimension D = 1, 2, 3,... and not only for D = 2. Finally there are uniqueness theorems saying that in a sense, besides a form of straightforward averaging, the weights used are the only ones that give coherent families of averaging operators.
dc.description77
dc.description2
dc.description105
dc.description123
dc.languageen
dc.publisherKluwer Academic Publ
dc.publisherDordrecht
dc.publisherHolanda
dc.relationActa Applicandae Mathematicae
dc.relationActa Appl. Math.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectlattice theory
dc.subjectscaling
dc.subjectaveraging operator
dc.subjectcoarsening operator
dc.subjectscaling limit
dc.subjectfield theory
dc.subjectcoherent family of averaging operators
dc.subjectBalaban-Federbush averaging
dc.subjectplaquette function
dc.subjectrenormalization
dc.subjectBF-average
dc.subjectcoherent averaging
dc.subjectLattice Gauge-theories
dc.subjectPhase Cell Approach
dc.subjectYang-mills Theory
dc.subjectRenormalization Transformations
dc.subjectPropagators
dc.titleCoherence and uniqueness theorems for averaging processes in statistical mechanics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución