dc.creatorComets, F
dc.creatorPopov, S
dc.creatorSchutz, GM
dc.creatorVachkovskaia, M
dc.date2010
dc.dateMAY
dc.date2014-11-19T21:13:37Z
dc.date2015-11-26T17:30:41Z
dc.date2014-11-19T21:13:37Z
dc.date2015-11-26T17:30:41Z
dc.date.accessioned2018-03-29T00:17:35Z
dc.date.available2018-03-29T00:17:35Z
dc.identifierAnnals Of Probability. Inst Mathematical Statistics, v. 38, n. 3, n. 1019, n. 1061, 2010.
dc.identifier0091-1798
dc.identifierWOS:000278946100002
dc.identifier10.1214/09-AOP504
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/58758
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/58758
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/58758
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285569
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionWe consider a stochastic billiard in a random tube which stretches to infinity in the direction of the first coordinate. This random tube is stationary and ergodic, and also it is supposed to be in some sense well behaved. The stochastic billiard can be described as follows: when strictly inside the tube, the particle moves straight with constant speed. Upon hitting the boundary, it is reflected randomly, according to the cosine law: the density of the outgoing direction is proportional to the cosine of the angle between this direction and the normal vector. We also consider the discrete-time random walk formed by the particle's positions at the moments of hitting the boundary. Under the condition of existence of the second moment of the projected jump length with respect to the stationary measure for the environment seen from the particle, we prove the quenched invariance principles for the projected trajectories of the random walk and the stochastic billiard.
dc.description38
dc.description3
dc.description1019
dc.description1061
dc.descriptionCNRS [UMR 7599]
dc.descriptionANR
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionDFG [Schu 827/5-2]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionCNRS [UMR 7599]
dc.descriptionCNPq [300328/2005-2, 304561/2006-1, 471925/2006-3]
dc.descriptionDFG [Schu 827/5-2]
dc.descriptionFAPESP [04/07276-2]
dc.languageen
dc.publisherInst Mathematical Statistics
dc.publisherCleveland
dc.publisherEUA
dc.relationAnnals Of Probability
dc.relationAnn. Probab.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectCosine law
dc.subjectKnudsen random walk
dc.subjectstochastic homogenization
dc.subjectinvariance principle
dc.subjectrandom medium
dc.subjectrandom conductances
dc.subjectrandom walks in random environment
dc.subjectReversible Markov-processes
dc.subjectRandom Conductances
dc.subjectRandom-walks
dc.subjectPercolation Clusters
dc.subjectDiffusion
dc.subjectNanopores
dc.subjectLaw
dc.titleQUENCHED INVARIANCE PRINCIPLE FOR THE KNUDSEN STOCHASTIC BILLIARD IN A RANDOM TUBE
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución