dc.creatorHotta, LK
dc.date2010
dc.date2014-11-17T12:32:35Z
dc.date2015-11-26T17:29:08Z
dc.date2014-11-17T12:32:35Z
dc.date2015-11-26T17:29:08Z
dc.date.accessioned2018-03-29T00:16:10Z
dc.date.available2018-03-29T00:16:10Z
dc.identifierMathematical Population Studies. Taylor & Francis Inc, v. 17, n. 2, n. 101, n. 111, 2010.
dc.identifier0889-8480
dc.identifierWOS:000277552500005
dc.identifier10.1080/08898481003689528
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/55353
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/55353
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/55353
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285212
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionOne of the main problems in estimating stochastic SEIR models is that the data are not completely observed. In this case, the estimation is usually done by least squares or by MCMC. The Bayesian melding method is proposed to estimate SEIR models and to evaluate the likelihood in the presence of incomplete data. The method is illustrated by estimating a model for HIV/TB interaction in the population of a prison.
dc.description17
dc.description2
dc.description101
dc.description111
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionLaboratorio Epifisma
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherTaylor & Francis Inc
dc.publisherPhiladelphia
dc.publisherEUA
dc.relationMathematical Population Studies
dc.relationMath. Popul. Stud.
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectBayesian inference
dc.subjectBayesian melding
dc.subjectHIV/TB interaction
dc.subjectSEIR model estimation
dc.subjectstochastic epidemic models
dc.subjectstochastic SEIR model
dc.subjectMycobacterium-tuberculosis
dc.subjectStatistical-inference
dc.subjectEpidemic Models
dc.subjectInfection
dc.subjectHiv
dc.subjectInmates
dc.subjectEbola
dc.titleBayesian Melding Estimation of a Stochastic SEIR Model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución