Artículos de revistas
Nonexistence of invariant semigroups in affine symmetric spaces
Registro en:
Mathematische Annalen. Springer, v. 321, n. 3, n. 587, n. 600, 2001.
0025-5831
WOS:000172559300006
10.1007/s002080100240
Autor
San Martin, LAB
Institución
Resumen
Let (G, L, tau) be an affine symmetric space with G a simple Lie group, tau an involutive automorphism of G and L an open subgroup of the tau -fixed point group G(tau). It is proved here that the existence of a proper semigroup S subset of G with intS not equal 0 and L subset of S implies that (G, L, tau) is of Hermitian type, as conjectured by Hilgert and Neeb [4]. When S exists, it turns out that it leaves invariant an open L-orbit in a minimal flag manifold of G. A byproduct of our approach is an alternate proof of the maximality of the compression semigroup of an open orbit (see Hilgert and Neeb [3]). 321 3 587 600