dc.creatorSan Martin, LAB
dc.date2001
dc.dateNOV
dc.date2014-11-14T14:50:12Z
dc.date2015-11-26T17:15:28Z
dc.date2014-11-14T14:50:12Z
dc.date2015-11-26T17:15:28Z
dc.date.accessioned2018-03-29T00:03:42Z
dc.date.available2018-03-29T00:03:42Z
dc.identifierMathematische Annalen. Springer, v. 321, n. 3, n. 587, n. 600, 2001.
dc.identifier0025-5831
dc.identifierWOS:000172559300006
dc.identifier10.1007/s002080100240
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/61987
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/61987
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/61987
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282052
dc.descriptionLet (G, L, tau) be an affine symmetric space with G a simple Lie group, tau an involutive automorphism of G and L an open subgroup of the tau -fixed point group G(tau). It is proved here that the existence of a proper semigroup S subset of G with intS not equal 0 and L subset of S implies that (G, L, tau) is of Hermitian type, as conjectured by Hilgert and Neeb [4]. When S exists, it turns out that it leaves invariant an open L-orbit in a minimal flag manifold of G. A byproduct of our approach is an alternate proof of the maximality of the compression semigroup of an open orbit (see Hilgert and Neeb [3]).
dc.description321
dc.description3
dc.description587
dc.description600
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationMathematische Annalen
dc.relationMath. Ann.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectCompression Semigroups
dc.subjectFlag Manifolds
dc.subjectOrbits
dc.titleNonexistence of invariant semigroups in affine symmetric spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución