Artículos de revistas
On the local well-posedness for some systems of coupled KdV equations
Registro en:
Nonlinear Analysis-theory Methods & Applications. Pergamon-elsevier Science Ltd, v. 69, n. 2, n. 692, n. 715, 2008.
0362-546X
WOS:000256990900026
10.1016/j.na.2007.06.009
Autor
Alvarez-Samaniego, B
Carvajal, X
Institución
Resumen
Using the theory developed by Kenig, Ponce, and Vega, we prove that the Hirota-Satsuma system is locally well-posed in Sobolev spaces H-s(R) x H-s(R) for 3/4 s <= 1. We introduce some Bourgain-type spaces X-s,b(a) for a not equal 0, s, b is an element of R to obtain local well-posedness for the Gear-Grimshaw system in H-s (R) x H-s (R) for s > -3/4, by establishing new mixed-bilinear estimates involving the two Bourgain-type spaces X-s,b(-alpha-) and X-s,b(-alpha+) adapted to partial derivative(t) + alpha(-)partial derivative(3)(x) and alpha + partial derivative(3)(x) respectively, where vertical bar alpha+vertical bar=vertical bar alpha(-)vertical bar not equal 0. (C) 2007 Elsevier Ltd. All rights reserved. 69 2 692 715