dc.creatorAlvarez-Samaniego, B
dc.creatorCarvajal, X
dc.date2008
dc.date42186
dc.date2014-11-14T01:45:08Z
dc.date2015-11-26T17:12:40Z
dc.date2014-11-14T01:45:08Z
dc.date2015-11-26T17:12:40Z
dc.date.accessioned2018-03-29T00:01:05Z
dc.date.available2018-03-29T00:01:05Z
dc.identifierNonlinear Analysis-theory Methods & Applications. Pergamon-elsevier Science Ltd, v. 69, n. 2, n. 692, n. 715, 2008.
dc.identifier0362-546X
dc.identifierWOS:000256990900026
dc.identifier10.1016/j.na.2007.06.009
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68708
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68708
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68708
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1281388
dc.descriptionUsing the theory developed by Kenig, Ponce, and Vega, we prove that the Hirota-Satsuma system is locally well-posed in Sobolev spaces H-s(R) x H-s(R) for 3/4 s <= 1. We introduce some Bourgain-type spaces X-s,b(a) for a not equal 0, s, b is an element of R to obtain local well-posedness for the Gear-Grimshaw system in H-s (R) x H-s (R) for s > -3/4, by establishing new mixed-bilinear estimates involving the two Bourgain-type spaces X-s,b(-alpha-) and X-s,b(-alpha+) adapted to partial derivative(t) + alpha(-)partial derivative(3)(x) and alpha + partial derivative(3)(x) respectively, where vertical bar alpha+vertical bar=vertical bar alpha(-)vertical bar not equal 0. (C) 2007 Elsevier Ltd. All rights reserved.
dc.description69
dc.description2
dc.description692
dc.description715
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationNonlinear Analysis-theory Methods & Applications
dc.relationNonlinear Anal.-Theory Methods Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectHirota-Satsuma system
dc.subjectGear-Grimshaw system
dc.subjectKdV equation
dc.subjectKorteweg-devries Equation
dc.subjectInternal Solitary Waves
dc.subjectCauchy-problem
dc.subjectModel System
dc.subjectRegularity
dc.subjectWeak
dc.titleOn the local well-posedness for some systems of coupled KdV equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución