Artículos de revistas
DENSITY OF INFIMUM-STABLE CONVEX CONES
Registro en:
Proceedings Of The American Mathematical Society. Amer Mathematical Soc, v. 121, n. 1, n. 175, n. 178, 1994.
0002-9939
1088-6826
WOS:A1994NG61200022
10.2307/2160379
Autor
PROLLA, JB
Institución
Resumen
Let X be a compact Hausdorff space and let A be a linear subspace of C(X; R) containing the constant functions, and separating points from probability measures. Then the inf-lattice generated by A is uniformly dense in C(X; R) . We show that this is a corollary of the Choquet-Deny Theorem, thus simplifying the proof and extending to the nonmetric case a result of McAfee and Reny. 121 1 175 178