dc.creatorPROLLA, JB
dc.date1994
dc.dateMAY
dc.date2014-12-16T11:34:51Z
dc.date2015-11-26T17:05:56Z
dc.date2014-12-16T11:34:51Z
dc.date2015-11-26T17:05:56Z
dc.date.accessioned2018-03-28T23:54:20Z
dc.date.available2018-03-28T23:54:20Z
dc.identifierProceedings Of The American Mathematical Society. Amer Mathematical Soc, v. 121, n. 1, n. 175, n. 178, 1994.
dc.identifier0002-9939
dc.identifier1088-6826
dc.identifierWOS:A1994NG61200022
dc.identifier10.2307/2160379
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79462
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/79462
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79462
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1279718
dc.descriptionLet X be a compact Hausdorff space and let A be a linear subspace of C(X; R) containing the constant functions, and separating points from probability measures. Then the inf-lattice generated by A is uniformly dense in C(X; R) . We show that this is a corollary of the Choquet-Deny Theorem, thus simplifying the proof and extending to the nonmetric case a result of McAfee and Reny.
dc.description121
dc.description1
dc.description175
dc.description178
dc.languageen
dc.publisherAmer Mathematical Soc
dc.publisherProvidence
dc.publisherEUA
dc.relationProceedings Of The American Mathematical Society
dc.relationProc. Amer. Math. Soc.
dc.rightsaberto
dc.sourceWeb of Science
dc.titleDENSITY OF INFIMUM-STABLE CONVEX CONES
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución