dc.creator | PROLLA, JB | |
dc.date | 1994 | |
dc.date | MAY | |
dc.date | 2014-12-16T11:34:51Z | |
dc.date | 2015-11-26T17:05:56Z | |
dc.date | 2014-12-16T11:34:51Z | |
dc.date | 2015-11-26T17:05:56Z | |
dc.date.accessioned | 2018-03-28T23:54:20Z | |
dc.date.available | 2018-03-28T23:54:20Z | |
dc.identifier | Proceedings Of The American Mathematical Society. Amer Mathematical Soc, v. 121, n. 1, n. 175, n. 178, 1994. | |
dc.identifier | 0002-9939 | |
dc.identifier | 1088-6826 | |
dc.identifier | WOS:A1994NG61200022 | |
dc.identifier | 10.2307/2160379 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79462 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/79462 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/79462 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1279718 | |
dc.description | Let X be a compact Hausdorff space and let A be a linear subspace of C(X; R) containing the constant functions, and separating points from probability measures. Then the inf-lattice generated by A is uniformly dense in C(X; R) . We show that this is a corollary of the Choquet-Deny Theorem, thus simplifying the proof and extending to the nonmetric case a result of McAfee and Reny. | |
dc.description | 121 | |
dc.description | 1 | |
dc.description | 175 | |
dc.description | 178 | |
dc.language | en | |
dc.publisher | Amer Mathematical Soc | |
dc.publisher | Providence | |
dc.publisher | EUA | |
dc.relation | Proceedings Of The American Mathematical Society | |
dc.relation | Proc. Amer. Math. Soc. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.title | DENSITY OF INFIMUM-STABLE CONVEX CONES | |
dc.type | Artículos de revistas | |