Artículos de revistas
Tensor Products, Characters, and Blocks of Finite-Dimensional Representations of Quantum Affine Algebras at Roots of Unity
Registro en:
International Mathematics Research Notices. Oxford Univ Press, n. 18, n. 4147, n. 4199, 2011.
1073-7928
WOS:000295170700006
10.1093/imrn/rnq250
Autor
Jakelic, D
de Moura, AA
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) We establish several results concerning tensor products, q-characters, and the block decomposition of the category of finite-dimensional representations of quantum affine algebras in the root of unity setting. In the generic case, a Weyl module is isomorphic to a tensor product of fundamental representations and this isomorphism was essential for establishing the block decomposition theorem. This is no longer true in the root of unity setting. We overcome the lack of such a tool by utilizing results on specialization of modules. Furthermore, we establish a sufficient condition for a Weyl module to be a tensor product of fundamental representations and prove that this condition is also necessary when the underlying simple Lie algebra is sl(2). We also study the braid group invariance of q-characters of fundamental representations. 18 4147 4199 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)