dc.creator | Jakelic, D | |
dc.creator | de Moura, AA | |
dc.date | 2011 | |
dc.date | 2014-08-01T18:24:54Z | |
dc.date | 2015-11-26T17:03:49Z | |
dc.date | 2014-08-01T18:24:54Z | |
dc.date | 2015-11-26T17:03:49Z | |
dc.date.accessioned | 2018-03-28T23:52:01Z | |
dc.date.available | 2018-03-28T23:52:01Z | |
dc.identifier | International Mathematics Research Notices. Oxford Univ Press, n. 18, n. 4147, n. 4199, 2011. | |
dc.identifier | 1073-7928 | |
dc.identifier | WOS:000295170700006 | |
dc.identifier | 10.1093/imrn/rnq250 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78571 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/78571 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1279186 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | We establish several results concerning tensor products, q-characters, and the block decomposition of the category of finite-dimensional representations of quantum affine algebras in the root of unity setting. In the generic case, a Weyl module is isomorphic to a tensor product of fundamental representations and this isomorphism was essential for establishing the block decomposition theorem. This is no longer true in the root of unity setting. We overcome the lack of such a tool by utilizing results on specialization of modules. Furthermore, we establish a sufficient condition for a Weyl module to be a tensor product of fundamental representations and prove that this condition is also necessary when the underlying simple Lie algebra is sl(2). We also study the braid group invariance of q-characters of fundamental representations. | |
dc.description | 18 | |
dc.description | 4147 | |
dc.description | 4199 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | en | |
dc.publisher | Oxford Univ Press | |
dc.publisher | Oxford | |
dc.publisher | Inglaterra | |
dc.relation | International Mathematics Research Notices | |
dc.relation | Int. Math. Res. Notices | |
dc.rights | fechado | |
dc.rights | http://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html | |
dc.source | Web of Science | |
dc.subject | Hyper Loop Algebras | |
dc.subject | Crystal Bases | |
dc.subject | Enveloping-algebras | |
dc.subject | T-analogs | |
dc.subject | Modules | |
dc.title | Tensor Products, Characters, and Blocks of Finite-Dimensional Representations of Quantum Affine Algebras at Roots of Unity | |
dc.type | Artículos de revistas | |