Artículos de revistas
The centre of generic algebras of small PI algebras
Registro en:
Journal Of Algebra. Academic Press Inc Elsevier Science, v. 375, n. 109, n. 120, 2013.
0021-8693
WOS:000313466400009
10.1016/j.jalgebra.2012.11.018
Autor
Koshlukov, P
de Mello, TC
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Verbally prime algebras are important in PI theory. They are well known over a field K of characteristic zero: 0 and K < T > (the trivial ones), M-n(K), M-n(E), M-ab(E). Here K < T > is the free associative algebra with free generators T, E is the infinite dimensional Grassmann algebra over K. M-n(K) and M-n(E) are the n x n matrices over K and over E, respectively. Moreover M-ab(E) are certain subalgebras of Ma+b(E), defined below. The generic algebras of these algebras have been studied extensively. Procesi gave a very tight description of the generic algebra of M-n(K). The situation is rather unclear for the remaining nontrivial verbally prime algebras. In this paper we study the centre of the generic algebra of M-11 (E) in two generators. We prove that this centre is a direct sum of the field and a nilpotent ideal (of the generic algebra). We describe the centre of this algebra. As a corollary we obtain that this centre contains nonscalar elements thus we answer a question posed by Berele. (C) 2012 Elsevier Inc. All rights reserved. 375 109 120 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq [304003/2011-5, 480139/2012-1] FAPESP [2010/50347-9]
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza