dc.creator | Koshlukov, P | |
dc.creator | de Mello, TC | |
dc.date | 2013 | |
dc.date | FEB 1 | |
dc.date | 2014-08-01T18:23:17Z | |
dc.date | 2015-11-26T17:00:35Z | |
dc.date | 2014-08-01T18:23:17Z | |
dc.date | 2015-11-26T17:00:35Z | |
dc.date.accessioned | 2018-03-28T23:48:23Z | |
dc.date.available | 2018-03-28T23:48:23Z | |
dc.identifier | Journal Of Algebra. Academic Press Inc Elsevier Science, v. 375, n. 109, n. 120, 2013. | |
dc.identifier | 0021-8693 | |
dc.identifier | WOS:000313466400009 | |
dc.identifier | 10.1016/j.jalgebra.2012.11.018 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78115 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/78115 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1278514 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Verbally prime algebras are important in PI theory. They are well known over a field K of characteristic zero: 0 and K < T > (the trivial ones), M-n(K), M-n(E), M-ab(E). Here K < T > is the free associative algebra with free generators T, E is the infinite dimensional Grassmann algebra over K. M-n(K) and M-n(E) are the n x n matrices over K and over E, respectively. Moreover M-ab(E) are certain subalgebras of Ma+b(E), defined below. The generic algebras of these algebras have been studied extensively. Procesi gave a very tight description of the generic algebra of M-n(K). The situation is rather unclear for the remaining nontrivial verbally prime algebras. In this paper we study the centre of the generic algebra of M-11 (E) in two generators. We prove that this centre is a direct sum of the field and a nilpotent ideal (of the generic algebra). We describe the centre of this algebra. As a corollary we obtain that this centre contains nonscalar elements thus we answer a question posed by Berele. (C) 2012 Elsevier Inc. All rights reserved. | |
dc.description | 375 | |
dc.description | 109 | |
dc.description | 120 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | CNPq [304003/2011-5, 480139/2012-1] | |
dc.description | FAPESP [2010/50347-9] | |
dc.language | en | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.publisher | San Diego | |
dc.publisher | EUA | |
dc.relation | Journal Of Algebra | |
dc.relation | J. Algebra | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Generic algebras | |
dc.subject | Central elements | |
dc.subject | Polynomial identities | |
dc.subject | Matrices over Grassmann algebras | |
dc.subject | Polynomial-identities | |
dc.subject | Grassmann Algebras | |
dc.subject | Trace Identities | |
dc.subject | Invariant-theory | |
dc.subject | Matrix Algebra | |
dc.subject | Order-2 | |
dc.title | The centre of generic algebras of small PI algebras | |
dc.type | Artículos de revistas | |