Artículos de revistas
Sobolev spaces of symmetric functions and applications
Registro en:
Journal Of Functional Analysis. Academic Press Inc Elsevier Science, v. 261, n. 12, n. 3735, n. 3770, 2011.
0022-1236
WOS:000295908800013
10.1016/j.jfa.2011.08.016
Autor
de Figueiredo, DG
dos Santos, EM
Miyagaki, OH
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) We prove sharp pointwise estimates for functions in the Sobolev spaces of radial functions defined in a ball. As a consequence. we obtain some imbeddings of such Sobolev spaces in weighted L-q-spaces. We also prove similar imbeddings for Sobolev spaces of functions with partial symmetry. Our techniques lead to new Hardy type inequalities. It is important to observe that we do not require any vanishing condition on the boundary to obtain all our estimates. We apply these imbeddings to obtain radial solutions and partially symmetric solutions for a biharmonic equation of the Henon type under both Dirichlet and Navier boundary conditions. The delicate question of the regularity of these solutions is also established. (C) 2011 Elsevier Inc. All rights reserved. 261 12 3735 3770 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) INCTMat Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)