dc.creatorde Figueiredo, DG
dc.creatordos Santos, EM
dc.creatorMiyagaki, OH
dc.date2011
dc.dateDEC 15
dc.date2014-07-30T18:43:00Z
dc.date2015-11-26T16:59:15Z
dc.date2014-07-30T18:43:00Z
dc.date2015-11-26T16:59:15Z
dc.date.accessioned2018-03-28T23:46:55Z
dc.date.available2018-03-28T23:46:55Z
dc.identifierJournal Of Functional Analysis. Academic Press Inc Elsevier Science, v. 261, n. 12, n. 3735, n. 3770, 2011.
dc.identifier0022-1236
dc.identifierWOS:000295908800013
dc.identifier10.1016/j.jfa.2011.08.016
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71712
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71712
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1278144
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWe prove sharp pointwise estimates for functions in the Sobolev spaces of radial functions defined in a ball. As a consequence. we obtain some imbeddings of such Sobolev spaces in weighted L-q-spaces. We also prove similar imbeddings for Sobolev spaces of functions with partial symmetry. Our techniques lead to new Hardy type inequalities. It is important to observe that we do not require any vanishing condition on the boundary to obtain all our estimates. We apply these imbeddings to obtain radial solutions and partially symmetric solutions for a biharmonic equation of the Henon type under both Dirichlet and Navier boundary conditions. The delicate question of the regularity of these solutions is also established. (C) 2011 Elsevier Inc. All rights reserved.
dc.description261
dc.description12
dc.description3735
dc.description3770
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionINCTMat
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Functional Analysis
dc.relationJ. Funct. Anal.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectSobolev spaces
dc.subjectSymmetric functions
dc.subjectNon-standard Sobolev imbeddings
dc.subjectHardy type inequalities
dc.subjectBiharmonic equation
dc.subjectSupercritical problems
dc.subjectHenon type weights
dc.subjectSemilinear Elliptic-equations
dc.subjectHenon Equation
dc.subjectHigher-order
dc.subjectAsymptotic-behavior
dc.subjectPositive Solutions
dc.subjectDirichlet Problem
dc.subjectInequalities
dc.subjectExistence
dc.subjectDimensions
dc.subjectGrowth
dc.titleSobolev spaces of symmetric functions and applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución