dc.creatorMARTINEZ, JM
dc.date1994
dc.dateFEB
dc.date2014-12-16T11:33:14Z
dc.date2015-11-26T16:57:02Z
dc.date2014-12-16T11:33:14Z
dc.date2015-11-26T16:57:02Z
dc.date.accessioned2018-03-28T23:44:32Z
dc.date.available2018-03-28T23:44:32Z
dc.identifierSiam Journal On Numerical Analysis. Siam Publications, v. 31, n. 1, n. 217, n. 226, 1994.
dc.identifier0036-1429
dc.identifierWOS:A1994MX73800011
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71958
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/71958
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71958
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1277550
dc.descriptionA family of SOP-secant methods for solving large-scale nonlinear systems of equations is introduced. The components and the variables of the system are divided into m blocks. At each cycle of the method, the groups of components ace changed one at a time using a quasi-Newton (least-change secant) step. Proofs of local convergence at an ideal rate are given, which use the theory of fixed-point quasi-Newton methods [J.M. Martinez, SIAM J. Numer. Anal., 29 (1992), pp. 1413-1434]. Numerical experiments are presented.
dc.description31
dc.description1
dc.description217
dc.description226
dc.languageen
dc.publisherSiam Publications
dc.publisherPhiladelphia
dc.relationSiam Journal On Numerical Analysis
dc.relationSIAM J. Numer. Anal.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectNONLINEAR SYSTEMS
dc.subjectQUASI-NEWTON METHODS
dc.subjectFIXED-POINT QUASI-NEWTON METHODS
dc.subjectLEAST-CHANGE SECANT UPDATE METHODS
dc.subjectSOP-NEWTON METHODS
dc.subjectQuasi-newton Methods
dc.subjectUpdate Methods
dc.subjectConvergence
dc.titleSOR-SECANT METHODS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución