Artículos de revistas
The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces
Registro en:
Journal Of Mathematical Analysis And Applications. Academic Press Inc Elsevier Science, v. 417, n. 2, n. 660, n. 693, 2014.
0022-247X
1096-0813
WOS:000335487000011
10.1016/j.jmaa.2014.03.056
Autor
Cunha, A
Pastor, A
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) In this paper we study the initial-value problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation. We prove that the IVP for such equation is locally well-posed in the usual Sobolev spaces H-s (R-2), s > 2, and in the anisotropic spaces H-s1,H-s2 (R-2), s(2) > 2, s(1) >= s(2). We also study the persistence properties of the solution and local well-posedness in the weighted Sobolev class Z(s,r) = H-s (R-2) boolean AND L-2 ((1 + x(2) + y(2))(tau) dx dy), where s > 2, r >= 0, and s >= 2r. Unique continuation properties of the solution are also established. These continuation principles show that our persistence properties are sharp. (C) 2014 Elsevier Inc. All rights reserved. 417 2 660 693 UFG - Campus Jatai, Brazil Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq [301535/2010-8] FAPESP [2013/08050-7]