dc.creatorCunha, A
dc.creatorPastor, A
dc.date2014
dc.dateSEP 15
dc.date2014-07-30T19:38:31Z
dc.date2015-11-26T16:56:04Z
dc.date2014-07-30T19:38:31Z
dc.date2015-11-26T16:56:04Z
dc.date.accessioned2018-03-28T23:43:31Z
dc.date.available2018-03-28T23:43:31Z
dc.identifierJournal Of Mathematical Analysis And Applications. Academic Press Inc Elsevier Science, v. 417, n. 2, n. 660, n. 693, 2014.
dc.identifier0022-247X
dc.identifier1096-0813
dc.identifierWOS:000335487000011
dc.identifier10.1016/j.jmaa.2014.03.056
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73575
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/73575
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1277292
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionIn this paper we study the initial-value problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation. We prove that the IVP for such equation is locally well-posed in the usual Sobolev spaces H-s (R-2), s > 2, and in the anisotropic spaces H-s1,H-s2 (R-2), s(2) > 2, s(1) >= s(2). We also study the persistence properties of the solution and local well-posedness in the weighted Sobolev class Z(s,r) = H-s (R-2) boolean AND L-2 ((1 + x(2) + y(2))(tau) dx dy), where s > 2, r >= 0, and s >= 2r. Unique continuation properties of the solution are also established. These continuation principles show that our persistence properties are sharp. (C) 2014 Elsevier Inc. All rights reserved.
dc.description417
dc.description2
dc.description660
dc.description693
dc.descriptionUFG - Campus Jatai, Brazil
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCNPq [301535/2010-8]
dc.descriptionFAPESP [2013/08050-7]
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Mathematical Analysis And Applications
dc.relationJ. Math. Anal. Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectBO-ZK equation
dc.subjectCauchy problem
dc.subjectLocal well-posedness
dc.subjectPersistence
dc.subjectGlobal Well-posedness
dc.subjectCauchy-problem
dc.titleThe IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución